References

References

AmanteEakins2009

Amante, C. and B.W. Eakins, 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. doi:10.7289/V5C8276M

Balmino1973

Balmino, G., Lambeck, K., & Kaula, W. M. (1973). A spherical harmonic analysis of the Earth’s topography. Journal of Geophysical Research, 78(2), 478-481.

BarthelmesKohler2016

Barthelmes, F. and Kohler, W. (2016), International Centre for Global Earth Models (ICGEM), in: Drewes, H., Kuglitsch, F., Adam, J. et al., The Geodesists Handbook 2016, Journal of Geodesy (2016), 90(10), pp 907-1205, doi:10.1007/s00190-016-0948-z

Blakely1995

Blakely, R. (1995). Potential Theory in Gravity and Magnetic Applications. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511549816

Cooper2000

Cooper, G.R.J. (2000), Gridding gravity data using an equivalent layer, Computers & Geosciences, Computers & Geosciences, doi:10.1016/S0098-3004(99)00089-8

Dampney1969

Dampney, C. N. G. (1969). The equivalent source technique. Geophysics, 34(1), 39–53. doi:10.1190/1.1439996

Forste_etal2014

Förste, Christoph; Bruinsma, Sean.L.; Abrikosov, Oleg; Lemoine, Jean-Michel; Marty, Jean Charles; Flechtner, Frank; Balmino, G.; Barthelmes, F.; Biancale, R. (2014): EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. doi:10.5880/icgem.2015.1

Fukushima2020

Fukushima, T. (2020). Speed and accuracy improvements in standard algorithm for prismatic gravitational field. Geophysical Journal International. doi:10.1093/gji/ggaa240

Grombein2013

Grombein, T., Seitz, K., Heck, B. (2013), Optimized formulas for the gravitational field of a tesseroid, Journal of Geodesy. doi:10.1007/s00190-013-0636-1

Hofmann-WellenhofMoritz2006

Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical Geodesy (2nd, corr. ed. 2006 edition ed.). Wien ; New York: Springer.

LiGotze2001

Li, X. and H. J. Gotze, 2001, Tutorial: Ellipsoid, geoid, gravity, geodesy, and geophysics, Geophysics, 66(6), p. 1660-1668, doi:10.1190/1.1487109

Nagy2000

Nagy, D., Papp, G. & Benedek, J.(2000). The gravitational potential and its derivatives for the prism. Journal of Geodesy 74: 552. doi:10.1007/s001900000116

Nagy2002

Nagy, D., Papp, G. & Benedek, J.(2002). Corrections to “The gravitational potential and its derivatives for the prism”. Journal of Geodesy. doi:10.1007/s00190-002-0264-7

Oliveira2021

Oliveira Jr, Vanderlei C. and Uieda, Leonardo and Barbosa, Valeria C. F.. Sketch of three coordinate systems: Geocentric Cartesian, Geocentric Geodetic, and Topocentric Cartesian. figshare. doi: 10.6084/m9.figshare.15044241.v1

Soler2019

Soler, S. R., Pesce, A., Gimenez, M. E., & Uieda, L. (2019). Gravitational field calculation in spherical coordinates using variable densities in depth, Geophysical Journal International. doi: 10.1093/gji/ggz277

Soler2021

Soler, S. R. and Uieda, L. (2021). Gradient-boosted equivalent sources, Geophysical Journal International. doi:10.1093/gji/ggab297

Uieda2015

Uieda, Leonardo (2015). A tesserioid (spherical prism) in a geocentric coordinate system with a local-North-oriented coordinate system. figshare. Figure. doi: 10.6084/m9.figshare.1495525.v1

Vajda2004

Vajda, P., Vaníček, P., Novák, P. and Meurers, B. (2004). On evaluation of Newton integrals in geodetic coordinates: Exact formulation and spherical approximation. Contributions to Geophysics and Geodesy, 34(4), 289-314.

TurcotteSchubert2014

Turcotte, D. L., & Schubert, G. (2014). Geodynamics (3 edition). Cambridge, United Kingdom: Cambridge University Press.