Airy Isostatic Moho

Airy Isostatic Moho

According to the Airy hypothesis of isostasy, topography above sea level is supported by a thickening of the crust (a root) while oceanic basins are supported by a thinning of the crust (an anti-root). Function harmonica.isostatic_moho_airy computes the depth to crust-mantle interface (the Moho) according to Airy isostasy. The function takes the depth to the crystalline basement and optionally any layers on top of it. Each layer is defined by its thickness and its density. In addition, one must assume a value for the reference thickness of the continental crust in order to convert the root/anti-root thickness into Moho depth. The function contains common default values for the reference thickness and crust, mantle [TurcotteSchubert2014].

We’ll use our sample topography data (harmonica.datasets.fetch_topography_earth) to calculate the Airy isostatic Moho depth of Africa.

Airy isostatic Moho depth of Africa

Out:

Topography/bathymetry grid:
<xarray.Dataset>
Dimensions:     (latitude: 171, longitude: 161)
Coordinates:
  * longitude   (longitude) float64 -20.0 -19.5 -19.0 -18.5 ... 59.0 59.5 60.0
  * latitude    (latitude) float64 -40.0 -39.5 -39.0 -38.5 ... 44.0 44.5 45.0
Data variables:
    topography  (latitude, longitude) float64 -3.523e+03 -3.392e+03 ... 29.0
Attributes: (12/31)
    generating_institute:  gfz-potsdam
    generating_date:       2018/12/13
    product_type:          topography
    body:                  earth
    modelname:             etopo1-2250
    max_used_degree:       1277
    ...                    ...
    maxvalue:              5.6509528E+03 meter
    minvalue:              -8.4094822E+03 meter
    signal_wrms:           2.4872117E+03 meter
    grid_format:           long_lat_value
    attributes:            longitude latitude topography
    attributes_units:      deg. deg. meter

Moho depth grid:
<xarray.DataArray 'moho_depth' (latitude: 171, longitude: 161)>
array([[17528.58, 17992.32, 18169.32, ..., 11793.78, 11712.36, 11499.96],
       [17733.9 , 18148.08, 18679.08, ..., 11436.24, 11432.7 , 11372.52],
       [17471.94, 17946.3 , 18604.74, ..., 11269.86, 11411.46, 11397.3 ],
       ...,
       [15149.7 , 13783.26, 13397.4 , ..., 30229.6 , 30207.2 , 30218.4 ],
       [15153.24, 14215.14, 13623.96, ..., 30184.8 , 30162.4 , 30162.4 ],
       [15139.08, 14622.24, 13900.08, ..., 30207.2 , 30184.8 , 30162.4 ]])
Coordinates:
  * longitude  (longitude) float64 -20.0 -19.5 -19.0 -18.5 ... 59.0 59.5 60.0
  * latitude   (latitude) float64 -40.0 -39.5 -39.0 -38.5 ... 44.0 44.5 45.0
Attributes:
    isostasy:        Airy
    density_crust:   2800.0
    density_mantle:  3300.0
    density_water:   1030

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np

import harmonica as hm

# Load the elevation model and cut out the portion of the data corresponding to
# Africa
data = hm.datasets.fetch_topography_earth()
region = (-20, 60, -40, 45)
data_africa = data.sel(latitude=slice(*region[2:]), longitude=slice(*region[:2]))
print("Topography/bathymetry grid:")
print(data_africa)

# Calculate the water thickness
oceans = np.array(data_africa.topography < 0)
water_thickness = data_africa.topography * oceans * -1
water_density = 1030

# Calculate the isostatic Moho depth using the default values for densities and
# reference Moho with water load. We neglect the effect of sediment here, so
# basement elevation refers to topography.
moho = hm.isostatic_moho_airy(
    basement=data_africa.topography,
    layers={"water": (water_thickness, water_density)},
)
print("\nMoho depth grid:")
print(moho)

# Draw the maps
plt.figure(figsize=(8, 9.5))
ax = plt.axes(projection=ccrs.LambertCylindrical(central_longitude=20))
pc = moho.plot.pcolormesh(
    ax=ax, cmap="viridis_r", add_colorbar=False, transform=ccrs.PlateCarree()
)
plt.colorbar(pc, ax=ax, orientation="horizontal", pad=0.01, aspect=50, label="meters")
ax.coastlines()
ax.set_title("Airy isostatic Moho depth of Africa")
ax.set_extent(region, crs=ccrs.PlateCarree())
plt.show()

Total running time of the script: ( 0 minutes 0.240 seconds)

Gallery generated by Sphinx-Gallery