References

References#

[Balmino1973]

Balmino, G., Lambeck, K., & Kaula, W. M. (1973). A spherical harmonic analysis of the Earth’s topography. Journal of Geophysical Research, 78(2), 478-481.

[BarthelmesKohler2016]

Barthelmes, F. and Kohler, W. (2016), International Centre for Global Earth Models (ICGEM), in: Drewes, H., Kuglitsch, F., Adam, J. et al., The Geodesists Handbook 2016, Journal of Geodesy (2016), 90(10), pp 907-1205, doi:10.1007/s00190-016-0948-z

[Blakely1995]

Blakely, R. (1995). Potential Theory in Gravity and Magnetic Applications. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511549816

[Cordell1992]

Lindrith Cordell (1992). A scattered equivalent‐source method for interpolation and gridding of potential‐field data in three dimensions. GEOPHYSICS 57: 629-636. doi:10.1190/1.1443275

[Dampney1969]

Dampney, C. N. G. (1969). The equivalent source technique. Geophysics, 34(1), 39–53. doi:10.1190/1.1439996

[Fukushima2020]

Fukushima, T. (2020). Speed and accuracy improvements in standard algorithm for prismatic gravitational field. Geophysical Journal International. doi:10.1093/gji/ggaa240

[Geosoft1999]

Geosoft Incorporated. (1999). Montaj MAGMAP filtering; 2–D frequency domain of potential field data extension for Oasis Montaj v. 6.1.

[Grombein2013]

Grombein, T., Seitz, K., Heck, B. (2013), Optimized formulas for the gravitational field of a tesseroid, Journal of Geodesy. doi:10.1007/s00190-013-0636-1

[Hofmann-WellenhofMoritz2006]

Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical Geodesy (2nd, corr. ed. 2006 edition ed.). Wien ; New York: Springer.

[LiGotze2001]

Li, X. and H. J. Gotze, 2001, Tutorial: Ellipsoid, geoid, gravity, geodesy, and geophysics, Geophysics, 66(6), p. 1660-1668, doi:10.1190/1.1487109

[MillerSingh1994]

Miller, H. G., & Singh, V. (1994). Potential field tilt — A new concept for location of potential field sources. Journal of Applied Geophysics, 32(3), 213–217. doi:10.1016/0926-9851(94)90002-7

[Nagy2000]

Nagy, D., Papp, G. & Benedek, J.(2000). The gravitational potential and its derivatives for the prism. Journal of Geodesy 74: 552. doi:10.1007/s001900000116

[Nagy2002]

Nagy, D., Papp, G. & Benedek, J.(2002). Corrections to “The gravitational potential and its derivatives for the prism”. Journal of Geodesy. doi:10.1007/s00190-002-0264-7

[Oliveira2021]

Oliveira Jr, Vanderlei C. and Uieda, Leonardo and Barbosa, Valeria C. F.. Sketch of three coordinate systems: Geocentric Cartesian, Geocentric Geodetic, and Topocentric Cartesian. figshare. doi: 10.6084/m9.figshare.15044241.v1

[Reid1990]

Reid, A. B., Allsop, J. M., Granser, H., Millett, A. J., & Somerton, I. W. (1990). Magnetic interpretation in three dimensions using Euler deconvolution. GEOPHYSICS. doi:10.1190/1.1442774

[Reid2014]

Reid, A. B., J. Ebbing, and S. J. Webb (2014), Avoidable Euler Errors – the use and abuse of Euler deconvolution applied to potential fields, Geophysical Prospecting, doi:10.1111/1365-2478.12119.

[ReidThurston2014]

Reid, A., and J. Thurston (2014), The structural index in gravity and magnetic interpretation: Errors, uses, and abuses, GEOPHYSICS, 79(4), J61-J66, doi:10.1190/geo2013-0235.1.

[Soler2019]

Soler, S. R., Pesce, A., Gimenez, M. E., & Uieda, L. (2019). Gravitational field calculation in spherical coordinates using variable densities in depth, Geophysical Journal International. doi: 10.1093/gji/ggz277

[Soler2021]

Soler, S. R. and Uieda, L. (2021). Gradient-boosted equivalent sources, Geophysical Journal International. doi:10.1093/gji/ggab297

[Uieda2014]

Uieda, L., V. C. Oliveira Jr., and V. C. F. Barbosa (2014), Geophysical tutorial: Euler deconvolution of potential-field data, The Leading Edge, 33(4), 448-450, doi:10.1190/tle33040448.1.

[Uieda2015]

Uieda, Leonardo (2015). A tesserioid (spherical prism) in a geocentric coordinate system with a local-North-oriented coordinate system. figshare. Figure. doi: 10.6084/m9.figshare.1495525.v1

[Vajda2004]

Vajda, P., Vaníček, P., Novák, P. and Meurers, B. (2004). On evaluation of Newton integrals in geodetic coordinates: Exact formulation and spherical approximation. Contributions to Geophysics and Geodesy, 34(4), 289-314.

[TurcotteSchubert2014]

Turcotte, D. L., & Schubert, G. (2014). Geodynamics (3 edition). Cambridge, United Kingdom: Cambridge University Press.