GPS velocities (3-component) for the Alps

GPS velocities (3-component) for the Alps

This is a compilation of 3D GPS velocities for the Alps. The horizontal velocities are reference to the Eurasian frame. All velocity components and even the position have error estimates, which is very useful and rare to find in a lot of datasets.

Original source: Sánchez et al. (2018)

Pre-processing: Source code for preparation of the original dataset for redistribution in Ensaio

import numpy as np
import pandas as pd
import pygmt

import ensaio

Download and cache the data and return the path to it on disk

fname = ensaio.fetch_alps_gps(version=1)
print(fname)

Out:

/home/runner/work/_temp/cache/ensaio/v1/alps-gps-velocity.csv.xz

Load the CSV formatted data with pandas

station_id longitude latitude height_m velocity_east_mmyr velocity_north_mmyr velocity_up_mmyr longitude_error_m latitude_error_m height_error_m velocity_east_error_mmyr velocity_north_error_mmyr velocity_up_error_mmyr
0 ACOM 13.514900 46.547935 1774.682 0.2 1.2 1.1 0.0005 0.0009 0.001 0.1 0.1 0.1
1 AFAL 12.174517 46.527144 2284.085 -0.7 0.9 1.3 0.0009 0.0009 0.001 0.1 0.2 0.2
2 AGDE 3.466427 43.296383 65.785 -0.2 -0.2 0.1 0.0009 0.0018 0.002 0.1 0.3 0.3
3 AGNE 7.139620 45.467942 2354.600 0.0 -0.2 1.5 0.0009 0.0036 0.004 0.2 0.6 0.5
4 AIGL 3.581261 44.121398 1618.764 0.0 0.1 0.7 0.0009 0.0009 0.002 0.1 0.5 0.5
... ... ... ... ... ... ... ... ... ... ... ... ... ...
181 WLBH 7.351299 48.415171 819.069 0.0 -0.2 -2.8 0.0005 0.0009 0.001 0.1 0.2 0.2
182 WTZR 12.878911 49.144199 666.025 0.1 0.2 -0.1 0.0005 0.0005 0.001 0.1 0.1 0.1
183 ZADA 15.227590 44.113177 64.307 0.2 3.1 -0.3 0.0018 0.0036 0.004 0.2 0.4 0.4
184 ZIMM 7.465278 46.877098 956.341 -0.1 0.4 1.0 0.0005 0.0009 0.001 0.1 0.1 0.1
185 ZOUF 12.973553 46.557221 1946.508 0.1 1.0 1.3 0.0005 0.0009 0.001 0.1 0.1 0.1

186 rows × 13 columns



To plot the vectors with PyGMT, we need to convert the horizontal components into angle (azimuth) and length.

Now we can make a PyGMT map with the horizontal velocity vectors and vertical velocities encoded as colored points.

# West, East, South, North boundaries of the map
region = [-5, 20, 40, 55]

fig = pygmt.Figure()
with fig.subplot(
    nrows=1,
    ncols=2,
    figsize=("35c", "15c"),
    sharey="l",  # shared y-axis on the left side
    frame="WSrt",
):
    with fig.set_panel(0):
        fig.basemap(region=region, projection="M?", frame="af")
        fig.coast(area_thresh=1e4, land="#eeeeee")
        scale_factor = 2 / length.max()
        fig.plot(
            x=data.longitude,
            y=data.latitude,
            direction=[angle, length * scale_factor],
            style="v0.15c+e",
            color="blue",
            pen="1p,blue",
        )
        # Plot a quiver caption
        fig.plot(
            x=-4,
            y=42,
            direction=[[0], [1 * scale_factor]],
            style="v0.15c+e",
            color="blue",
            pen="1p,blue",
        )
        fig.text(
            x=-4,
            y=42.2,
            text="1 mm/yr",
            justify="BL",
            font="10p,Helvetica,blue",
        )
    with fig.set_panel(1):
        fig.basemap(region=region, projection="M?", frame="af")
        fig.coast(area_thresh=1e4, land="#eeeeee")
        pygmt.makecpt(
            cmap="polar",
            series=[data.velocity_up_mmyr.min(), data.velocity_up_mmyr.max()],
        )
        fig.plot(
            x=data.longitude,
            y=data.latitude,
            color=data.velocity_up_mmyr,
            style="c0.2c",
            cmap=True,
            pen="0.5p,black",
        )
        fig.colorbar(
            frame='af+l"vertical velocity [mm/yr]"',
            position="jTL+w7c/0.3c+h+o1/1",
        )
fig.show()
alps gps velocity

Out:

<IPython.core.display.Image object>

Total running time of the script: ( 0 minutes 6.971 seconds)

Gallery generated by Sphinx-Gallery