[DEPRECATED] Magnetic data from Rio de Janeiro

[DEPRECATED] Magnetic data from Rio de JaneiroΒΆ

Warning

All sample datasets in Verde are deprecated and will be removed in Verde v2.0.0. The tutorials/examples will transition to using Ensaio instead.

We provide sample total-field magnetic anomaly data from an airborne survey of Rio de Janeiro, Brazil, from the 1970s. The data are made available by the Geological Survey of Brazil (CPRM) through their GEOSGB portal. See the documentation for verde.datasets.fetch_rio_magnetic for more details.

Total-field Magnetic Anomaly of Rio de Janeiro

Out:

/usr/share/miniconda3/envs/test/lib/python3.9/site-packages/verde/datasets/sample_data.py:209: FutureWarning: The Rio magnetic anomaly dataset is deprecated and will be removed in Verde v2.0.0. Use a different dataset instead.
  warnings.warn(
   longitude   latitude  ...  line_type  line_number
0 -42.590424 -22.499878  ...       LINE         2902
1 -42.590485 -22.498978  ...       LINE         2902
2 -42.590530 -22.498077  ...       LINE         2902
3 -42.590591 -22.497177  ...       LINE         2902
4 -42.590652 -22.496277  ...       LINE         2902

[5 rows x 6 columns]
/usr/share/miniconda3/envs/test/lib/python3.9/site-packages/verde/datasets/sample_data.py:242: FutureWarning: The Rio magnetic anomaly dataset is deprecated and will be removed in Verde v2.0.0. Use a different dataset instead.
  warnings.warn(

import cartopy.crs as ccrs
import matplotlib.pyplot as plt

import verde as vd

# The data are in a pandas.DataFrame
data = vd.datasets.fetch_rio_magnetic()
print(data.head())

# Make a Mercator map of the data using Cartopy
crs = ccrs.PlateCarree()
plt.figure(figsize=(7, 5))
ax = plt.axes(projection=ccrs.Mercator())
ax.set_title("Total-field Magnetic Anomaly of Rio de Janeiro")
# Since the data is diverging (going from negative to positive) we need to
# center our colorbar on 0. To do this, we calculate the maximum absolute value
# of the data to set vmin and vmax.
maxabs = vd.maxabs(data.total_field_anomaly_nt)
# Cartopy requires setting the projection of the original data through the
# transform argument. Use PlateCarree for geographic data.
plt.scatter(
    data.longitude,
    data.latitude,
    c=data.total_field_anomaly_nt,
    s=1,
    cmap="seismic",
    vmin=-maxabs,
    vmax=maxabs,
    transform=crs,
)
plt.colorbar(pad=0.01).set_label("nT")
# Set the proper ticks for a Cartopy map
vd.datasets.setup_rio_magnetic_map(ax)
plt.show()

Total running time of the script: ( 0 minutes 0.796 seconds)

Gallery generated by Sphinx-Gallery