Source code for verde.trend

"""
2D polynomial trends.
"""
import numpy as np
from sklearn.utils.validation import check_is_fitted

from .base import BaseGridder, check_fit_input, least_squares
from .coordinates import get_region
from .utils import n_1d_arrays


[docs]class Trend(BaseGridder): """ Fit a 2D polynomial trend to spatial data. The trend is estimated through weighted least-squares regression. The Jacobian (design, sensitivity, feature, etc) matrix for the regression is normalized using :class:`sklearn.preprocessing.StandardScaler` without centering the mean so that the transformation can be undone in the estimated coefficients. Parameters ---------- degree : int The degree of the polynomial. Must be >= 1. Attributes ---------- coef_ : array The estimated polynomial coefficients that fit the observed data. region_ : tuple The boundaries (``[W, E, S, N]``) of the data used to fit the interpolator. Used as the default region for the :meth:`~verde.Trend.grid` and :meth:`~verde.Trend.scatter` methods. Examples -------- >>> from verde import grid_coordinates >>> coordinates = grid_coordinates((1, 5, -5, -1), shape=(5, 5)) >>> data = 10 + 2*coordinates[0] - 0.4*coordinates[1] >>> trend = Trend(degree=1).fit(coordinates, data) >>> print(', '.join(['{:.1f}'.format(i) for i in trend.coef_])) 10.0, 2.0, -0.4 >>> import numpy as np >>> np.allclose(trend.predict(coordinates), data) True >>> # Use weights to account for outliers >>> data_out = data.copy() >>> data_out[2, 2] += 500 >>> weights = np.ones_like(data) >>> weights[2, 2] = 1e-10 >>> trend_out = Trend(degree=1).fit(coordinates, data_out, weights) >>> print(', '.join(['{:.1f}'.format(i) for i in trend_out.coef_])) 10.0, 2.0, -0.4 >>> residual = data_out - trend_out.predict(coordinates) >>> print('{:.2f}'.format(residual[2, 2])) 500.00 """ def __init__(self, degree): self.degree = degree
[docs] def fit(self, coordinates, data, weights=None): """ Fit the trend to the given data. The data region is captured and used as default for the :meth:`~verde.Trend.grid` and :meth:`~verde.Trend.scatter` methods. All input arrays must have the same shape. Parameters ---------- coordinates : tuple of arrays Arrays with the coordinates of each data point. Should be in the following order: (easting, northing, vertical, ...). Only easting and northing will be used, all subsequent coordinates will be ignored. data : array The data values of each data point. weights : None or array If not None, then the weights assigned to each data point. Typically, this should be 1 over the data uncertainty squared. Returns ------- self Returns this estimator instance for chaining operations. """ coordinates, data, weights = check_fit_input(coordinates, data, weights) easting, northing = n_1d_arrays(coordinates, 2) self.region_ = get_region((easting, northing)) jac = self.jacobian((easting, northing), dtype=data.dtype) self.coef_ = least_squares(jac, data, weights, damping=None) return self
[docs] def predict(self, coordinates): """ Evaluate the polynomial trend on the given set of points. Requires a fitted estimator (see :meth:`~verde.Trend.fit`). Parameters ---------- coordinates : tuple of arrays Arrays with the coordinates of each data point. Should be in the following order: (easting, northing, vertical, ...). Only easting and northing will be used, all subsequent coordinates will be ignored. Returns ------- data : array The trend values evaluated on the given points. """ check_is_fitted(self, ["coef_"]) easting, northing = n_1d_arrays(coordinates, 2) shape = np.broadcast(*coordinates[:2]).shape data = np.zeros(easting.size, dtype=easting.dtype) combinations = polynomial_power_combinations(self.degree) for coef, (i, j) in zip(self.coef_, combinations): data += (easting ** i) * (northing ** j) * coef return data.reshape(shape)
[docs] def jacobian(self, coordinates, dtype="float64"): """ Make the Jacobian matrix for a 2D polynomial. Each column of the Jacobian is ``easting**i * northing**j`` for each (i, j) pair in the polynomial. Parameters ---------- coordinates : tuple of arrays Arrays with the coordinates of each data point. Should be in the following order: (easting, northing, vertical, ...). Only easting and northing will be used, all subsequent coordinates will be ignored. dtype : str or numpy dtype The type of the output Jacobian numpy array. Returns ------- jacobian : 2D array The (n_data, n_coefficients) Jacobian matrix. Examples -------- >>> import numpy as np >>> east = np.linspace(0, 4, 5) >>> north = np.linspace(-5, -1, 5) >>> print(Trend(degree=1).jacobian((east, north), dtype=np.int)) [[ 1 0 -5] [ 1 1 -4] [ 1 2 -3] [ 1 3 -2] [ 1 4 -1]] >>> print(Trend(degree=2).jacobian((east, north), dtype=np.int)) [[ 1 0 -5 0 0 25] [ 1 1 -4 1 -4 16] [ 1 2 -3 4 -6 9] [ 1 3 -2 9 -6 4] [ 1 4 -1 16 -4 1]] """ easting, northing = n_1d_arrays(coordinates, 2) if easting.shape != northing.shape: raise ValueError("Coordinate arrays must have the same shape.") combinations = polynomial_power_combinations(self.degree) ndata = easting.size nparams = len(combinations) out = np.empty((ndata, nparams), dtype=dtype) for col, (i, j) in enumerate(combinations): out[:, col] = (easting ** i) * (northing ** j) return out
def polynomial_power_combinations(degree): """ Combinations of powers for a 2D polynomial of a given degree. Produces the (i, j) pairs to evaluate the polynomial with ``x**i*y**j``. Parameters ---------- degree : int The degree of the 2D polynomial. Must be >= 1. Returns ------- combinations : tuple A tuple with ``(i, j)`` pairs. Examples -------- >>> print(polynomial_power_combinations(1)) ((0, 0), (1, 0), (0, 1)) >>> print(polynomial_power_combinations(2)) ((0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)) >>> # This is a long polynomial so split it in two lines >>> print(" ".join([str(c) for c in polynomial_power_combinations(3)])) (0, 0) (1, 0) (0, 1) (2, 0) (1, 1) (0, 2) (3, 0) (2, 1) (1, 2) (0, 3) """ if degree < 1: raise ValueError("Invalid polynomial degree '{}'. Must be >= 1.".format(degree)) combinations = ((i, j) for j in range(degree + 1) for i in range(degree + 1 - j)) return tuple(sorted(combinations, key=sum))