Note
Click here to download the full example code
Trend EstimationΒΆ
Trend estimation and removal is a common operation, particularly when dealing with
geophysical data. Moreover, some of the interpolation methods, like
verde.VectorSpline2D
, struggle with long-wavelength trends in the data. The
verde.Trend
class fits a 2D polynomial trend of arbitrary degree to the data
and can be used to remove it.
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import numpy as np
import verde as vd
Our sample air temperature data from Texas has a clear trend from land to the ocean:
data = vd.datasets.fetch_texas_wind()
coordinates = (data.longitude, data.latitude)
plt.figure(figsize=(8, 6))
ax = plt.axes(projection=ccrs.Mercator())
plt.scatter(
data.longitude,
data.latitude,
c=data.air_temperature_c,
s=100,
cmap="plasma",
transform=ccrs.PlateCarree(),
)
plt.colorbar().set_label("Air temperature (C)")
vd.datasets.setup_texas_wind_map(ax)
plt.show()
We can estimate the polynomial coefficients for this trend:
trend = vd.Trend(degree=1).fit(coordinates, data.air_temperature_c)
print(trend.coef_)
Out:
[102.4946959 0.44373823 -1.48922224]
More importantly, we can predict the trend values and remove them from our data:
trend_values = trend.predict(coordinates)
residuals = data.air_temperature_c - trend_values
fig, axes = plt.subplots(
1, 2, figsize=(10, 6), subplot_kw=dict(projection=ccrs.Mercator())
)
ax = axes[0]
ax.set_title("Trend")
tmp = ax.scatter(
data.longitude,
data.latitude,
c=trend_values,
s=60,
cmap="plasma",
transform=ccrs.PlateCarree(),
)
plt.colorbar(tmp, ax=ax, orientation="horizontal", pad=0.06)
vd.datasets.setup_texas_wind_map(ax)
ax = axes[1]
ax.set_title("Residuals")
maxabs = vd.maxabs(residuals)
tmp = ax.scatter(
data.longitude,
data.latitude,
c=residuals,
s=60,
cmap="bwr",
vmin=-maxabs,
vmax=maxabs,
transform=ccrs.PlateCarree(),
)
plt.colorbar(tmp, ax=ax, orientation="horizontal", pad=0.08)
vd.datasets.setup_texas_wind_map(ax)
plt.tight_layout()
plt.show()
The fitting, prediction, and residual calculation can all be done in a single step
using the filter
method:
# filter always outputs coordinates and weights as well, which we don't need and will
# ignore here.
__, res_filter, __ = vd.Trend(degree=1).filter(coordinates, data.air_temperature_c)
print(np.allclose(res_filter, residuals))
Out:
True
Additionally, verde.Trend
implements the gridder interface
and has the grid
and profile
methods.
Total running time of the script: ( 0 minutes 0.218 seconds)