References

References#

[Anderson1998]

Anderson, J. D., Schubert, G., Jacobson, R. A., Lau, E. L., Moore, W. B., & Sjogren, W. L. (1998). Europa’s differentiated internal structure: Inferences from four Galileo encounters. Science, 281, 2019–2022. doi:10.1126/science.281.5385.2019

[Anderson2001]

Anderson, J. D., Jacobson, R. A., Lau, E. L., Moore, W. B., & Schubert, G. (2001). Io’s gravity field and interior structure. J. Geophys. Res., 106, 32963–32969. doi:10.1029/2000JE001367

[Anderson2001b]

Anderson, J. D., Jacobson, R. A., McElrath, T. P., Moore, W. B., & Schubert, G. (2001). Shape, mean radius, gravity field, and interior structure of Callisto. Icarus, 153(1), 157–161. doi:10.1006/icar.2001.6664

[Ardalan2009]

Ardalan, A. A., Karimi, R., & Grafarend, E. W. (2009). A New Reference Equipotential Surface, and Reference Ellipsoid for the Planet Mars. Earth, Moon, and Planets, 106(1), 1. doi:10.1007/s11038-009-9342-7

[Brozović2015]

Brozović, M., Showalter, M. R., Jacobson, R. A., & Buie, M. W. (2015). The orbits and masses of satellites of Pluto. Icarus, 246, 317–329. doi:10.1016/j.icarus.2014.03.015

[Corlies2017]

Corlies, P., Hayes, A. G., Birch, S. P. D., Lorenz, R., Stiles, B. W., Kirk, R., Poggiali, V., Zebker, H., & Iess, L. (2017). Titan’s Topography and Shape at the End of the Cassini Mission. Geophysical Research Letters, 44(23), 11,754-11,761. doi:10.1002/2017GL075518

[Durante2019]

Durante, D., Hemingway, D. J., Racioppa, P., Iess, L., & Stevenson, D. J. (2019). Titan’s gravity field and interior structure after Cassini. Icarus, 326, 123–132. doi:10.1016/j.icarus.2019.03.003

[GomezCasajus2022]

Gomez Casajus, L., Ermakov, A. I., Zannoni, M., Keane, J. T., Stevenson, D., Buccino, D. R., Durante, D., Parisi, M., Park, R. S., Tortora, P., & Bolton, S. J. (2022). Gravity Field of Ganymede After the Juno Extended Mission. Geophysical Research Letters, 49(24), e2022GL099475. doi:10.1029/2022GL099475

[HofmannWellenhofMoritz2006]

Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical Geodesy (2nd, corr. ed. 2006 edition ed.). Wien; New York: Springer.

[Jacobson2021]

Jacobson, R. A. (2021), The Orbits of the Regular Jovian Satellites and the Orientation of the Pole of Jupiter, personal communication to Horizons/NAIF. JUP365, accessed via JPL Solar System Dynamics

[Jacobson2022]

Jacobson, R. (2022). The Orbits of the Main Saturnian Satellites, the Saturnian System Gravity Field, and the Orientation of Saturn’s Pole. The Astronomical Journal, 164, 199. doi:10.3847/1538-3881/ac90c9

[Karcol2017]

Karcol, R., Mikuška, J., & Marušiak, I. (2017). Normal earth gravity field versus gravity effect of layered ellipsoidal model. In Understanding the Bouguer Anomaly (pp. 63-77). Elsevier.

[Karimi2017]

Karimi, R., Azmoudeh Ardalan, A., & Vasheghani Farahani, S. (2017, October). The size, shape and orientation of the asteroid Vesta based on data from the Dawn mission. Earth and Planetary Science Letters. Elsevier BV. doi:10.1016/j.epsl.2017.07.033

[Konopliv2018]

Konopliv, A. S., Park, R. S., Vaughan, A. T., Bills, B. G., Asmar, S. W., Ermakov, A. I., Rambaux, N., Raymond, C. A., Castillo-Rogez, J. C., Russell, C. T., Smith, D. E., & Zuber, M. T. (2018). The Ceres gravity field, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data. Icarus, 299, 411–429. doi:10.1016/j.icarus.2017.08.005

[Lakshmanan1991]

Lakshmanan, J. (1991). The generalized gravity anomaly: Endoscopic microgravity. Geophysics, 56(5), 712-723. doi:10.1190/1.1443090

[LeMaistre2023]

Le Maistre, S., Rivoldini, A., Caldiero, A., Yseboodt, M., Baland, R.-M., Beuthe, M., Van Hoolst, T., Dehant, V., Folkner, W. M., Buccino, D., Kahan, D., Marty, J.-C., Antonangeli, D., Badro, J., Drilleau, M., Konopliv, A., Péters, M.-J., Plesa, A.-C., Samuel, H., Tosi, N., Wieczorek, M., Lognonné, P., Panning, M., Smrekar, S. & Banerdt, W. B. (2023). Spin state and deep interior structure of Mars from InSight radio tracking. Nature, 1–5. doi:10.1038/s41586-023-06150-0

[Lemoine1998]

Lemoine, F. G., Kenyon, S. C., Factor, J. K., Trimmer, R. G., Pavlis, N. K., Chinn, D. S., Cox, C. M., Klosko, S. M., Lutchke, S. B., Torrence, M. H., Wang, Y. M., Williamson, R. G., Pavlis, E. C., Rapp, R. H., & Olson, T. R. (1998). The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA Goddard Space Flight Center, NASA/TP 1998-206861

[LiGotze2001]

Li, X. and H. J. Gotze, (2001). Tutorial: Ellipsoid, geoid, gravity, geodesy, and geophysics, Geophysics, 66(6), p. 1660-1668, doi:10.1190/1.1487109

[Maia2024]

Maia, J. (2024). Spherical harmonic models of the shape of Mercury [Data set]. Zenodo. doi:10.5281/zenodo.10809345

[Mazarico2014]

Mazarico, E., Genova, A., Goossens, S., Lemoine, F. G., Neumann, G. A., Zuber, M. T., Smith, D. E., & Solomon, S. C. (2014). The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit. Journal of Geophysical Research: Planets, 119(12), 2417–2436. doi:10.1002/2014JE004675

[Moritz1988]

Moritz, H. (1988). Geodetic reference system 1980. Bull. Geodesique 62, 348–358. doi:10.1007/BF02520722 (see the corrigendum)

[Nimmo2007]

Nimmo, F., Thomas, P., Pappalardo, R., & Moore, W. (2007). The global shape of Europa: Constraints on lateral shell thickness variations. Icarus, 191(1), 183–192. doi:10.1016/j.icarus.2007.04.021

[Nimmo2017]

Nimmo, F., Umurhan, O., Lisse, C. M., Bierson, C. J., Lauer, T. R., Buie, M. W., Throop, H. B., Kammer, J. A., Roberts, J. H., McKinnon, W. B., Zangari, A. M., Moore, J. M., Stern, S. A., Young, L. A., Weaver, H. A., Olkin, C. B., & Ennico, K. (2017). Mean radius and shape of Pluto and Charon from New Horizons images. Icarus, 287, 12–29. doi:10.1016/j.icarus.2016.06.027

[Park2019]

Park, R. S., Vaughan, A. T., Konopliv, A. S., Ermakov, A. I., Mastrodemos, N., Castillo-Rogez, J. C., Joy, S. P., Nathues, A., Polanskey, C. A., Rayman, M. D., Riedel, J. E., Raymond, C. A., Russell, C. T., & Zuber, M. T. (2019). High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging Data. Icarus, 319, 812–827. doi:10.1016/j.icarus.2018.10.024

[Park2024]

Park, R. S., Mastrodemos, N., Jacobson, R. A., Berne, A., Vaughan, A. T., Hemingway, D. J., Leonard, E. J., Castillo-Rogez, J. C., Cockell, C. S., Keane, J. T., Konopliv, A. S., Nimmo, F., Riedel, J. E., Simons, M., & Vance, S. (2024). The Global Shape, Gravity Field, and Libration of Enceladus. Journal of Geophysical Research: Planets, 129(1), e2023JE008054. doi:10.1029/2023JE008054

[Pěč1983]

Pěč, K. & Martinec, Z. (1983). Expansion of geoid heights over a triaxial Earth’s ellipsoid into a spherical harmonic series. Studia Geophysica et Geodaetica, 27, 217-232. doi: 10.1007/BF01592791

[Russell2012]

Russell, C. T., Raymond, C. A., Coradini, A., McSween, H. Y., Zuber, M. T., Nathues, A., et al. (2012). Dawn at Vesta: Testing the Protoplanetary Paradigm. Science. doi:10.1126/science.1219381

[Thomas1998]

Thomas, P. C., Davies, M. E., Colvin, T. R., Oberst, J., Schuster, P., Neukum, G., Carr, M. H., McEwen, A., Schubert, G., & Belton, M. J. S. (1998). The Shape of Io from Galileo Limb Measurements. Icarus, 135(1), 175–180. doi: 10.1006/icar.1998.5987

[Vermeille2002]

Vermeille, H. (2002). Direct transformation from geocentric coordinates to geodetic coordinates. Journal of Geodesy. 76. 451-454. doi:10.1007/s00190-002-0273-6

[Wieczorek2015]

Wieczorek, M. A. (2015). Gravity and Topography of the Terrestrial Planets. In Treatise on Geophysics (pp. 153–193). Elsevier. doi:10.1016/b978-0-444-53802-4.00169-x

[Zubarev2015]

Zubarev, A., Nadezhdina, I., Oberst, J., Hussmann, H., & Stark, A. (2015). New Ganymede control point network and global shape model. Planetary and Space Science, 117, 246–249. doi:10.1016/j.pss.2015.06.022