.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "gallery/vector_uncoupled.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_gallery_vector_uncoupled.py: Gridding 2D vectors =================== We can use :class:`verde.Vector` to simultaneously process and grid all components of vector data. Each component is processed and gridded separately (see `Erizo `__ for an elastically coupled alternative) but we have the convenience of dealing with a single estimator. :class:`verde.Vector` can be combined with :class:`verde.Trend`, :class:`verde.Spline`, and :class:`verde.Chain` to create a full processing pipeline. .. GENERATED FROM PYTHON SOURCE LINES 19-112 .. image-sg:: /gallery/images/sphx_glr_vector_uncoupled_001.png :alt: Uncoupled spline gridding of wind speed :srcset: /gallery/images/sphx_glr_vector_uncoupled_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none station_id longitude ... wind_speed_east_knots wind_speed_north_knots 0 0F2 -97.7756 ... 1.032920 -2.357185 1 11R -96.3742 ... 1.692155 2.982564 2 2F5 -101.9018 ... -1.110056 -0.311412 3 3T5 -96.9500 ... 1.695097 3.018448 4 5C1 -98.6946 ... 1.271400 1.090743 [5 rows x 6 columns] Chain(steps=[('mean', BlockReduce(reduction=, spacing=37000.0)), ('trend', Vector(components=[Trend(degree=1), Trend(degree=1)])), ('spline', Vector(components=[Spline(damping=1e-10, mindist=500000.0), Spline(damping=1e-10, mindist=500000.0)]))]) /usr/share/miniconda3/envs/test/lib/python3.9/site-packages/verde/base/base_classes.py:359: FutureWarning: The default scoring will change from R² to negative root mean squared error (RMSE) in Verde 2.0.0. This may change model selection results slightly. warnings.warn( Cross-validation R^2 score: 0.78 /usr/share/miniconda3/envs/test/lib/python3.9/site-packages/verde/base/base_classes.py:463: FutureWarning: The 'spacing', 'shape' and 'region' arguments will be removed in Verde v2.0.0. Please use the 'verde.grid_coordinates' function to define grid coordinates and pass them as the 'coordinates' argument. warnings.warn( | .. code-block:: default import cartopy.crs as ccrs import matplotlib.pyplot as plt import numpy as np import pyproj import verde as vd # Fetch the wind speed data from Texas. data = vd.datasets.fetch_texas_wind() print(data.head()) # Separate out some of the data into utility variables coordinates = (data.longitude.values, data.latitude.values) region = vd.get_region(coordinates) # Use a Mercator projection because Spline is a Cartesian gridder projection = pyproj.Proj(proj="merc", lat_ts=data.latitude.mean()) # Split the data into a training and testing set. We'll fit the gridder on the # training set and use the testing set to evaluate how well the gridder is # performing. train, test = vd.train_test_split( projection(*coordinates), (data.wind_speed_east_knots, data.wind_speed_north_knots), random_state=2, ) # We'll make a 20 arc-minute grid spacing = 20 / 60 # Chain together a blocked mean to avoid aliasing, a polynomial trend (Spline # usually requires de-trended data), and finally a Spline for each component. # Notice that BlockReduce can work on multicomponent data without the use of # Vector. chain = vd.Chain( [ ("mean", vd.BlockReduce(np.mean, spacing * 111e3)), ("trend", vd.Vector([vd.Trend(degree=1) for i in range(2)])), ( "spline", vd.Vector([vd.Spline(damping=1e-10, mindist=500e3) for i in range(2)]), ), ] ) print(chain) # Fit on the training data chain.fit(*train) # And score on the testing data. The best possible score is 1, meaning a # perfect prediction of the test data. score = chain.score(*test) print("Cross-validation R^2 score: {:.2f}".format(score)) # Interpolate the wind speed onto a regular geographic grid and mask the data # that are outside of the convex hull of the data points. grid_full = chain.grid( region=region, spacing=spacing, projection=projection, dims=["latitude", "longitude"], ) grid = vd.convexhull_mask(coordinates, grid=grid_full, projection=projection) # Make maps of the original and gridded wind speed plt.figure(figsize=(6, 6)) ax = plt.axes(projection=ccrs.Mercator()) ax.set_title("Uncoupled spline gridding of wind speed") tmp = ax.quiver( grid.longitude.values, grid.latitude.values, grid.east_component.values, grid.north_component.values, width=0.0015, scale=100, color="tab:blue", transform=ccrs.PlateCarree(), label="Interpolated", ) ax.quiver( *coordinates, data.wind_speed_east_knots.values, data.wind_speed_north_knots.values, width=0.003, scale=100, color="tab:red", transform=ccrs.PlateCarree(), label="Original", ) ax.quiverkey(tmp, 0.17, 0.23, 5, label="5 knots", coordinates="figure") ax.legend(loc="lower left") # Use an utility function to add tick labels and land and ocean features to the # map. vd.datasets.setup_texas_wind_map(ax) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.183 seconds) .. _sphx_glr_download_gallery_vector_uncoupled.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: vector_uncoupled.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: vector_uncoupled.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_