.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "gallery/convex_hull_mask.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_gallery_convex_hull_mask.py: Mask grid points by convex hull =============================== Sometimes, data points are unevenly distributed. In such cases, we might not want to have interpolated grid points that are too far from any data point. Function :func:`verde.convexhull_mask` allows us to set grid points that fall outside of the convex hull of the data points to NaN or some other value. .. GENERATED FROM PYTHON SOURCE LINES 16-58 .. image-sg:: /gallery/images/sphx_glr_convex_hull_mask_001.png :alt: Only keep grid points that inside of the convex hull :srcset: /gallery/images/sphx_glr_convex_hull_mask_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [[False False False ... False False False] [False True True ... True False False] [False True True ... True True False] ... [False False False ... False False False] [False False False ... False False False] [False False False ... False False False]] /usr/share/miniconda3/envs/test/lib/python3.9/site-packages/verde/datasets/sample_data.py:152: UserWarning: All kwargs are being ignored. They are accepted to guarantee backward compatibility. warnings.warn( | .. code-block:: default import cartopy.crs as ccrs import matplotlib.pyplot as plt import numpy as np import pyproj import verde as vd # The Baja California bathymetry dataset has big gaps on land. We want to mask # these gaps on a dummy grid that we'll generate over the region just to show # what that looks like. data = vd.datasets.fetch_baja_bathymetry() region = vd.get_region((data.longitude, data.latitude)) # Generate the coordinates for a regular grid mask spacing = 10 / 60 coordinates = vd.grid_coordinates(region, spacing=spacing) # Generate a mask for points. The mask is True for points that are within the # convex hull. We can provide a projection function to convert the coordinates # before the convex hull is calculated (Mercator in this case). mask = vd.convexhull_mask( data_coordinates=(data.longitude, data.latitude), coordinates=coordinates, projection=pyproj.Proj(proj="merc", lat_ts=data.latitude.mean()), ) print(mask) # Create a dummy grid with ones that we can mask to show the results. Turn # points that are outside of the convex hull into NaNs so they won't show up in # our plot. dummy_data = np.ones_like(coordinates[0]) dummy_data[~mask] = np.nan # Make a plot of the masked data and the data locations. crs = ccrs.PlateCarree() plt.figure(figsize=(7, 6)) ax = plt.axes(projection=ccrs.Mercator()) ax.set_title("Only keep grid points that inside of the convex hull") ax.plot(data.longitude, data.latitude, ".y", markersize=0.5, transform=crs) ax.pcolormesh(*coordinates, dummy_data, transform=crs) vd.datasets.setup_baja_bathymetry_map(ax, land=None) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 4.374 seconds) .. _sphx_glr_download_gallery_convex_hull_mask.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: convex_hull_mask.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: convex_hull_mask.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_