Note
Click here to download the full example code
Bathymetry data from Baja California¶
We provide sample bathymetry data from Baja California to test the gridding
methods. This is the @tut_ship.xyz
sample data from the GMT tutorial. The data is downloaded to a local
directory if it’s not there already.
Out:
longitude latitude bathymetry_m
0 245.00891 27.49555 -636.0
1 245.01201 27.49286 -655.0
2 245.01512 27.49016 -710.0
3 245.01822 27.48746 -695.0
4 245.02443 27.48206 -747.0
/home/travis/build/fatiando/verde/data/examples/baja_bathymetry.py:35: UserWarning: Tight layout not applied. The left and right margins cannot be made large enough to accommodate all axes decorations.
plt.tight_layout()
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import verde as vd
# The data are in a pandas.DataFrame
data = vd.datasets.fetch_baja_bathymetry()
print(data.head())
# Make a Mercator map of the data using Cartopy
plt.figure(figsize=(7, 6))
ax = plt.axes(projection=ccrs.Mercator())
ax.set_title("Bathymetry from Baja California")
# Plot the bathymetry as colored circles. Cartopy requires setting the projection of the
# original data through the transform argument. Use PlateCarree for geographic data.
plt.scatter(
data.longitude,
data.latitude,
c=data.bathymetry_m,
s=0.1,
transform=ccrs.PlateCarree(),
)
plt.colorbar().set_label("meters")
# Use an utility function to add tick labels and land and ocean features to the map.
vd.datasets.setup_baja_bathymetry_map(ax)
plt.tight_layout()
plt.show()
Total running time of the script: ( 0 minutes 1.474 seconds)