Source code for verde.mask

"""
Mask grid points based on different criteria.
"""
import numpy as np

from .base import n_1d_arrays
from .utils import kdtree


[docs]def distance_mask( data_coordinates, maxdist, coordinates=None, grid=None, projection=None ): """ Mask grid points that are too far from the given data points. Distances are Euclidean norms. If using geographic data, provide a projection function to convert coordinates to Cartesian before distance calculations. Either *coordinates* or *grid* must be given: * If *coordinates* is not None, produces an array that is False when a point is more than *maxdist* from the closest data point and True otherwise. * If *grid* is not None, produces a mask and applies it to *grid* (an :class:`xarray.Dataset`). .. note:: If installed, package ``pykdtree`` will be used instead of :class:`scipy.spatial.cKDTree` for better performance. Parameters ---------- data_coordinates : tuple of arrays Same as *coordinates* but for the data points. maxdist : float The maximum distance that a point can be from the closest data point. coordinates : None or tuple of arrays Arrays with the coordinates of each point that will be masked. Should be in the following order: (easting, northing, ...). Only easting and northing will be used, all subsequent coordinates will be ignored. grid : None or :class:`xarray.Dataset` 2D grid with values to be masked. Will use the first two dimensions of the grid as northing and easting coordinates, respectively. The mask will be applied to *grid* using the :meth:`xarray.Dataset.where` method. projection : callable or None If not None, then should be a callable object ``projection(easting, northing) -> (proj_easting, proj_northing)`` that takes in easting and northing coordinate arrays and returns projected easting and northing coordinate arrays. This function will be used to project the given coordinates (or the ones extracted from the grid) before calculating distances. Returns ------- mask : array or :class:`xarray.Dataset` If *coordinates* was given, then a boolean array with the same shape as the elements of *coordinates*. If *grid* was given, then an :class:`xarray.Dataset` with the mask applied to it. Examples -------- >>> from verde import grid_coordinates >>> region = (0, 5, -10, -4) >>> spacing = 1 >>> coords = grid_coordinates(region, spacing=spacing) >>> mask = distance_mask((2.5, -7.5), maxdist=2, coordinates=coords) >>> print(mask) [[False False False False False False] [False False True True False False] [False True True True True False] [False True True True True False] [False False True True False False] [False False False False False False] [False False False False False False]] >>> # Mask an xarray.Dataset directly >>> import xarray as xr >>> coords_dict = {"easting": coords[0][0, :], "northing": coords[1][:, 0]} >>> data_vars = {"scalars": (["northing", "easting"], np.ones(mask.shape))} >>> grid = xr.Dataset(data_vars, coords=coords_dict) >>> masked = distance_mask((3.5, -7.5), maxdist=2, grid=grid) >>> print(masked.scalars.values) [[nan nan nan nan nan nan] [nan nan nan 1. 1. nan] [nan nan 1. 1. 1. 1.] [nan nan 1. 1. 1. 1.] [nan nan nan 1. 1. nan] [nan nan nan nan nan nan] [nan nan nan nan nan nan]] """ if coordinates is None and grid is None: raise ValueError("Either coordinates or grid must be given.") if coordinates is None: dims = [grid[var].dims for var in grid.data_vars][0] coordinates = np.meshgrid(grid.coords[dims[1]], grid.coords[dims[0]]) if len(set(i.shape for i in coordinates)) != 1: raise ValueError("Coordinate arrays must have the same shape.") shape = coordinates[0].shape if projection is not None: data_coordinates = projection(*n_1d_arrays(data_coordinates, 2)) coordinates = projection(*n_1d_arrays(coordinates, 2)) tree = kdtree(data_coordinates[:2]) distance = tree.query(np.transpose(n_1d_arrays(coordinates, 2)))[0].reshape(shape) mask = distance <= maxdist if grid is not None: return grid.where(mask) return mask