Source code for magali._utils

# Copyright (c) 2024 The Magali Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
#
# This code is part of the Fatiando a Terra project (https://www.fatiando.org)
#

import harmonica as hm
import numpy as np

from ._constants import MICROMETER_TO_METER


def _convert_micrometer_to_meter(coordinates):
    """
    Convert coordinates from micrometers to meters.

    Parameters
    ----------
    coordinates : tuple of float
        Coordinate values in micrometers (μm).

    Returns
    -------
    coordinates_m : tuple of float
        Coordinate values converted to meters (m).
    """
    return tuple(c * MICROMETER_TO_METER for c in coordinates)


def _estimate_grid_spacing(data):
    """
    Estimate grid spacing as the mean difference in x and y coordinates.

    Parameters
    ----------
    data : xr.DataArray
        Input data array with coordinates "x" and "y".

    Returns
    -------
    spacing : float
        Estimated grid spacing.
    """
    return np.mean([np.abs(data.x[1] - data.x[0]), np.abs(data.y[1] - data.y[0])])


[docs] def gradients(data): """ Compute first-order spatial derivatives in the x, y, and z directions. Parameters ---------- data : xr.DataArray Input data array with coordinates "x" and "y". Returns ------- dx : xr.DataArray First derivative along the x-direction. dy : xr.DataArray First derivative along the y-direction. dz : xr.DataArray First derivative along the z-direction. Notes ----- The vertical derivative is estimated using the difference between an upward-continued and a downward-continued version of the data. This avoids downward continuation, which can amplify noise. """ # Compute horizontal derivatives dx = hm.derivative_easting(data) dy = hm.derivative_northing(data) # Estimate grid spacing spacing = _estimate_grid_spacing(data) # Compute vertical derivative data_up = hm.upward_continuation(data, spacing).assign_coords(x=data.x, y=data.y) data_down = hm.upward_continuation(data, -spacing).assign_coords(x=data.x, y=data.y) dz = (data_up - data_down) / (2 * spacing) return dx, dy, dz
[docs] def total_gradient_amplitude(dx, dy, dz): """ Compute the total gradient amplitude from spatial derivatives. Parameters ---------- dx : xr.DataArray First derivative along the x-direction. dy : xr.DataArray First derivative along the y-direction. dz : xr.DataArray First derivative along the z-direction. Returns ------- tga : xr.DataArray Total gradient amplitude. """ return np.sqrt(dx**2 + dy**2 + dz**2)
[docs] def total_gradient_amplitude_grid(data): """ Compute the total gradient amplitude (TGA) of a given data array. The function calculates the horizontal and vertical derivatives of the input data and then computes the total gradient amplitude. Parameters ---------- data : xr.DataArray Input data array with coordinates `x` and `y`. Returns ------- tga : xr.DataArray Dataset containing the total gradient amplitude (TGA). """ dx, dy, dz = gradients(data) tga = total_gradient_amplitude(dx, dy, dz) # Assign attributes tga.attrs = {"long_name": "Total Gradient Amplitude", "units": "nT/µm"} return tga