Source code for harmonica.forward.tesseroid

# Copyright (c) 2018 The Harmonica Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
#
# This code is part of the Fatiando a Terra project (https://www.fatiando.org)
#
"""
Forward modelling for tesseroids
"""
from numba import jit
import numpy as np
from numpy.polynomial.legendre import leggauss

from ..constants import GRAVITATIONAL_CONST
from .utils import distance_spherical
from .point_mass import (
    kernel_potential_spherical,
    kernel_g_z_spherical,
)

STACK_SIZE = 100
MAX_DISCRETIZATIONS = 100000
GLQ_DEGREES = (2, 2, 2)
DISTANCE_SIZE_RATII = {"potential": 1, "g_z": 2.5}


[docs]def tesseroid_gravity( coordinates, tesseroids, density, field, distance_size_ratii=None, glq_degrees=GLQ_DEGREES, stack_size=STACK_SIZE, max_discretizations=MAX_DISCRETIZATIONS, radial_adaptive_discretization=False, dtype=np.float64, disable_checks=False, ): # pylint: disable=too-many-locals, too-many-arguments """ Compute gravitational field of tesseroids on computation points. .. warning:: The ``g_z`` field returns the downward component of the gravitational acceleration on the local North oriented coordinate system. It is equivalent to the opposite of the radial component, therefore it's positive if the acceleration vector points inside the spheroid. Parameters ---------- coordinates : list or 1d-array List or array containing ``longitude``, ``latitude`` and ``radius`` of the computation points defined on a spherical geocentric coordinate system. Both ``longitude`` and ``latitude`` should be in degrees and ``radius`` in meters. tesseroids : list or 1d-array List or array containing the coordinates of the tesseroid: ``w``, ``e``, ``s``, ``n``, ``bottom``, ``top`` under a geocentric spherical coordinate system. The longitudinal and latitudinal boundaries should be in degrees, while the radial ones must be in meters. density : list or array List or array containing the density of each tesseroid in kg/m^3. field : str Gravitational field that wants to be computed. The available fields are: - Gravitational potential: ``potential`` - Downward acceleration: ``g_z`` distance_size_ratio : dict or None (optional) Dictionary containing distance-size ratii for each gravitational field used on the adaptive discretization algorithm. Values must be the available fields and keys should be the desired distance-size ratio. The greater the distance-size ratio, more discretizations will occur, increasing the accuracy of the numerical approximation but also the computation time. If None, the default values of distance-size ratii will be used: D = 1 for the potential and D = 2.5 for the gradient. Default to None. glq_degrees : tuple (optional) List containing the GLQ degrees used on each direction: ``glq_degree_longitude``, ``glq_degree_latitude``, ``glq_degree_radius``. The GLQ degree specifies how many point masses will be created along each direction. Increasing the GLQ degree will increase the accuracy of the numerical approximation, but also the computation time. Default ``[2, 2, 2]``. stack_size : int (optional) Size of the tesseroid stack used on the adaptive discretization algorithm. If the algorithm will perform too many splits, please increase the stack size. max_discretizations : int (optional) Maximum number of splits made by the adaptive discretization algorithm. If the algorithm will perform too many splits, please increase the maximum number of splits. radial_adaptive_discretization : bool (optional) If ``False``, the adaptive discretization algorithm will split the tesseroid only on the horizontal direction. If ``True``, it will perform a three dimensional adaptive discretization, splitting the tesseroids on every direction. Default ``False``. dtype : data-type (optional) Data type assigned to the resulting gravitational field. Default to ``np.float64``. disable_checks : bool (optional) Flag that controls whether to perform a sanity check on the model. Should be set to ``True`` only when it is certain that the input model is valid and it does not need to be checked. Default to ``False``. Returns ------- result : array Gravitational field generated by the tesseroids on the computation points. Examples -------- >>> # Get WGS84 ellipsoid from the Boule package >>> import boule >>> ellipsoid = boule.WGS84 >>> # Define tesseroid of 1km of thickness with top surface on the mean >>> # Earth radius >>> thickness = 1000 >>> top = ellipsoid.mean_radius >>> bottom = top - thickness >>> w, e, s, n = -1.0, 1.0, -1.0, 1.0 >>> tesseroid = [w, e, s, n, bottom, top] >>> # Set a density of 2670 kg/m^3 >>> density = 2670.0 >>> # Define computation point located on the top surface of the tesseroid >>> coordinates = [0, 0, ellipsoid.mean_radius] >>> # Compute radial component of the gravitational gradient in mGal >>> tesseroid_gravity(coordinates, tesseroid, density, field="g_z") array(112.54539933) """ kernels = {"potential": kernel_potential_spherical, "g_z": kernel_g_z_spherical} if field not in kernels: raise ValueError("Gravitational field {} not recognized".format(field)) # Figure out the shape and size of the output array cast = np.broadcast(*coordinates[:3]) result = np.zeros(cast.size, dtype=dtype) # Convert coordinates, tesseroids and density to arrays coordinates = tuple(np.atleast_1d(i).ravel() for i in coordinates[:3]) tesseroids = np.atleast_2d(tesseroids) density = np.atleast_1d(density).ravel() # Sanity checks for tesseroids and computation points if not disable_checks: if density.size != tesseroids.shape[0]: raise ValueError( "Number of elements in density ({}) ".format(density.size) + "mismatch the number of tesseroids ({})".format(tesseroids.shape[0]) ) tesseroids = _check_tesseroids(tesseroids) _check_points_outside_tesseroids(coordinates, tesseroids) # Get value of D (distance_size_ratio) if distance_size_ratii is None: distance_size_ratii = DISTANCE_SIZE_RATII if field not in distance_size_ratii: raise ValueError( 'Gravitational field "{}" not found on distance_size_ratii dictionary'.format( field ) ) distance_size_ratio = distance_size_ratii[field] # Get GLQ unscaled nodes, weights and number of nodes for each small # tesseroid glq_nodes, glq_weights = glq_nodes_weights(glq_degrees) # Initialize arrays to perform memory allocation only once stack = np.empty((stack_size, 6), dtype=dtype) small_tesseroids = np.empty((max_discretizations, 6), dtype=dtype) # Compute gravitational field jit_tesseroid_gravity( coordinates, tesseroids, density, stack, small_tesseroids, result, distance_size_ratio, radial_adaptive_discretization, glq_nodes, glq_weights, kernels[field], ) result *= GRAVITATIONAL_CONST # Convert to more convenient units if field == "g_z": result *= 1e5 # SI to mGal return result.reshape(cast.shape)
@jit(nopython=True) def jit_tesseroid_gravity( coordinates, tesseroids, density, stack, small_tesseroids, result, distance_size_ratio, radial_discretization, glq_nodes, glq_weights, kernel, ): # pylint: disable=too-many-locals,too-many-arguments,invalid-name """ Compute gravitational field of tesseroids on computations points Perform adaptive discretization, convert each small tesseroid to equivalent point masses through GLQ and use point masses kernel functions to compute the gravitational field. Parameters ---------- coordinates : tuple Tuple containing the coordinates of the computation points in spherical geocentric coordinate system in the following order: ``longitude``, ``latitude``, ``radius``. Each element of the tuple must be a 1d array. Both ``longitude`` and ``latitude`` should be in degrees and ``radius`` in meters. tesseroids : 2d-array Array containing the boundaries of each tesseroid: ``w``, ``e``, ``s``, ``n``, ``bottom``, ``top`` under a geocentric spherical coordinate system. The array must have the following shape: (``n_tesseroids``, 6), where ``n_tesseroids`` is the total number of tesseroids. All tesseroids must have valid boundary coordinates. Horizontal boundaries should be in degrees while radial boundaries should be in meters. density : 1d-array Density of each tesseroid in SI units. stack : 2d-array Empty array where tesseroids created by adaptive discretization algorithm will be processed. small_tesseroids : 2d-array Empty array where smaller tesseroids created by adaptive discretization algorithm will be stored. point_masses : 2d-array Empty array where equivalent point masses will be stored. weights : 1d-array Empty array where the GLQ weight of each point mass will be stored. result : 1d-array Array where the gravitational effect of each tesseroid will be added. distance_size_ratio : float Value of the distance size ratio. radial_discretization : bool If ``False``, the adaptive discretization algorithm will split the tesseroid only on the horizontal direction. If ``True``, it will perform a three dimensional adaptive discretization, splitting the tesseroids on every direction. glq_nodes : list List containing unscaled GLQ nodes. glq_weights : list List containing GLQ weights of the nodes. kernel : func Kernel function for the gravitational field of point masses. """ # Get coordinates of the observation points # and precompute trigonometric functions longitude, latitude, radius = coordinates[:] longitude_rad = np.radians(longitude) cosphi = np.cos(np.radians(latitude)) sinphi = np.sin(np.radians(latitude)) for l in range(longitude.size): for m in range(tesseroids.shape[0]): # Apply adaptive discretization on tesseroid n_splits = _adaptive_discretization( (longitude[l], latitude[l], radius[l]), tesseroids[m, :], distance_size_ratio, stack, small_tesseroids, radial_discretization, ) # Compute effect of the tesseroid through GLQ for tess_index in range(n_splits): tesseroid = small_tesseroids[tess_index, :] result[l] += gauss_legendre_quadrature( longitude_rad[l], cosphi[l], sinphi[l], radius[l], tesseroid, density[m], glq_nodes, glq_weights, kernel, ) @jit(nopython=True) def gauss_legendre_quadrature( longitude, cosphi, sinphi, radius, tesseroid, density, glq_nodes, glq_weights, kernel, ): # pylint: disable=too-many-locals r""" Compute the effect of a tesseroid on a single observation point through GLQ The tesseroid is converted into a set of point masses located on the scaled nodes of the Gauss-Legendre Quadrature. The number of point masses created from each tesseroid is equal to the product of the GLQ degrees for each direction (:math:`N_r`, :math:`N_\lambda`, :math:`N_\phi`). The mass of each point mass is defined as the product of the tesseroid density (:math:`\rho`), the GLQ weights for each direction (:math:`W_i^r`, :math:`W_j^\phi`, :math:`W_k^\lambda`), the scale constant :math:`A` and the :math:`\kappa` factor evaluated on the coordinates of the point mass. Parameters ---------- longitude : float Longitudinal coordinate of the observation points in radians. cosphi : float Cosine of the latitudinal coordinate of the observation point in radians. sinphi : float Sine of the latitudinal coordinate of the observation point in radians. radius : float Radial coordinate of the observation point in meters. tesseroids : 1d-array Array containing the boundaries of the tesseroid: ``w``, ``e``, ``s``, ``n``, ``bottom``, ``top``. Horizontal boundaries should be in degrees and radial boundaries in meters. density : float Density of the tesseroid in SI units. glq_nodes : list Unscaled location of GLQ nodes for each direction. glq_weights : list GLQ weigths for each node for each direction. kernel : func Kernel function for the gravitational field of point masses. """ # Get tesseroid boundaries w, e, s, n, bottom, top = tesseroid[:] # Calculate the A factor for the tesseroid a_factor = 1 / 8 * np.radians(e - w) * np.radians(n - s) * (top - bottom) # Unpack nodes and weights lon_nodes, lat_nodes, rad_nodes = glq_nodes[:] lon_weights, lat_weights, rad_weights = glq_weights[:] # Compute effect of the tesseroid on the observation point # by iterating over the location of the point masses # (move the iteration along the longitudinal nodes to the bottom for # optimization: reduce the number of times that the trigonometric functions # are evaluated) result = 0.0 for j, lat_node in enumerate(lat_nodes): # Get the latitude of the point mass latitude_p = np.radians(0.5 * (n - s) * lat_node + 0.5 * (n + s)) cosphi_p = np.cos(latitude_p) sinphi_p = np.sin(latitude_p) for k, rad_node in enumerate(rad_nodes): # Get the radius of the point mass radius_p = 0.5 * (top - bottom) * rad_node + 0.5 * (top + bottom) # Get kappa constant for the point mass kappa = radius_p ** 2 * cosphi_p for i, lon_node in enumerate(lon_nodes): # Get the longitude of the point mass longitude_p = np.radians(0.5 * (e - w) * lon_node + 0.5 * (e + w)) # Compute the mass of the point mass mass = ( density * a_factor * kappa * lon_weights[i] * lat_weights[j] * rad_weights[k] ) # Add effect of the current point mass to the result result += mass * kernel( longitude, cosphi, sinphi, radius, longitude_p, cosphi_p, sinphi_p, radius_p, ) return result def glq_nodes_weights(glq_degrees): """ Calculate GLQ unscaled nodes and weights Parameters ---------- glq_degrees : list List of GLQ degrees for each direction: ``longitude``, ``latitude``, ``radius``. Returns ------- glq_nodes : list Unscaled GLQ nodes for each direction: ``longitude``, ``latitude``, ``radius``. glq_weights : list GLQ weights for each node on each direction: ``longitude``, ``latitude``, ``radius``. """ # Unpack GLQ degrees lon_degree, lat_degree, rad_degree = glq_degrees[:] # Get nodes coordinates and weights lon_node, lon_weights = leggauss(lon_degree) lat_node, lat_weights = leggauss(lat_degree) rad_node, rad_weights = leggauss(rad_degree) # Reorder nodes and weights glq_nodes = (lon_node, lat_node, rad_node) glq_weights = (lon_weights, lat_weights, rad_weights) return glq_nodes, glq_weights @jit(nopython=True) def _adaptive_discretization( coordinates, tesseroid, distance_size_ratio, stack, small_tesseroids, radial_discretization=False, ): """ Perform the adaptive discretization algorithm on a tesseroid It apply the three or two dimensional adaptive discretization algorithm on a tesseroid after a single computation point. Parameters ---------- coordinates : array Array containing ``longitude``, ``latitude`` and ``radius`` of a single computation point. tesseroid : array Array containing the boundaries of the tesseroid. distance_size_ratio : float Value for the distance-size ratio. A greater value will perform more discretizations. stack : 2d-array Array with shape ``(6, stack_size)`` that will temporarly hold the small tesseroids that are not yet processed. If too many discretizations will take place, increase the ``stack_size``. small_tesseroids : 2d-array Array with shape ``(6, max_discretizations)`` that will contain every small tesseroid produced by the adaptive discretization algorithm. If too many discretizations will take place, increase the ``max_discretizations``. radial_discretization : bool (optional) If ``True`` the three dimensional adaptive discretization will be applied. If ``False`` the two dimensional adaptive discretization will be applied, i.e. the tesseroid will only be split on the ``longitude`` and ``latitude`` directions. Default ``False``. Returns ------- n_splits : int Total number of small tesseroids generated by the algorithm. """ # Create stack of tesseroids stack[0] = tesseroid stack_top = 0 n_splits = 0 while stack_top >= 0: # Pop the first tesseroid from the stack tesseroid = stack[stack_top] stack_top -= 1 # Get its dimensions l_lon, l_lat, l_rad = _tesseroid_dimensions(tesseroid) # Get distance between computation point and center of tesseroid distance = _distance_tesseroid_point(coordinates, tesseroid) # Check inequality n_lon, n_lat, n_rad = 1, 1, 1 if distance / l_lon < distance_size_ratio: n_lon = 2 if distance / l_lat < distance_size_ratio: n_lat = 2 if distance / l_rad < distance_size_ratio and radial_discretization: n_rad = 2 # Apply discretization if n_lon * n_lat * n_rad > 1: # Raise error if stack overflow # Number of tesseroids in stack = stack_top + 1 if (stack_top + 1) + n_lon * n_lat * n_rad > stack.shape[0]: raise OverflowError("Stack Overflow. Try to increase the stack size.") stack_top = _split_tesseroid( tesseroid, n_lon, n_lat, n_rad, stack, stack_top ) else: # Raise error if small_tesseroids overflow if n_splits + 1 > small_tesseroids.shape[0]: raise OverflowError( "Exceeded maximum discretizations." + " Please increase the maximum_discretizations." ) small_tesseroids[n_splits] = tesseroid n_splits += 1 return n_splits @jit(nopython=True) def _split_tesseroid( tesseroid, n_lon, n_lat, n_rad, stack, stack_top ): # pylint: disable=too-many-locals """ Split tesseroid along each dimension """ w, e, s, n, bottom, top = tesseroid[:] # Compute differential distance d_lon = (e - w) / n_lon d_lat = (n - s) / n_lat d_rad = (top - bottom) / n_rad for i in range(n_lon): for j in range(n_lat): for k in range(n_rad): stack_top += 1 stack[stack_top, 0] = w + d_lon * i stack[stack_top, 1] = w + d_lon * (i + 1) stack[stack_top, 2] = s + d_lat * j stack[stack_top, 3] = s + d_lat * (j + 1) stack[stack_top, 4] = bottom + d_rad * k stack[stack_top, 5] = bottom + d_rad * (k + 1) return stack_top @jit(nopython=True) def _tesseroid_dimensions(tesseroid): """ Calculate the dimensions of the tesseroid. """ w, e, s, n, bottom, top = tesseroid[:] w, e, s, n = np.radians(w), np.radians(e), np.radians(s), np.radians(n) latitude_center = (n + s) / 2 l_lat = top * np.arccos(np.sin(n) * np.sin(s) + np.cos(n) * np.cos(s)) l_lon = top * np.arccos( np.sin(latitude_center) ** 2 + np.cos(latitude_center) ** 2 * np.cos(e - w) ) l_rad = top - bottom return l_lon, l_lat, l_rad @jit(nopython=True) def _distance_tesseroid_point( coordinates, tesseroid ): # pylint: disable=too-many-locals """ Distance between a computation point and the center of a tesseroid """ # Get center of the tesseroid w, e, s, n, bottom, top = tesseroid[:] longitude_p = (w + e) / 2 latitude_p = (s + n) / 2 radius_p = (bottom + top) / 2 # Get distance between computation point and tesseroid center distance = distance_spherical(coordinates, (longitude_p, latitude_p, radius_p)) return distance def _check_tesseroids(tesseroids): # pylint: disable=too-many-branches """ Check if tesseroids boundaries are well defined A valid tesseroid should have: - latitudinal boundaries within the [-90, 90] degrees interval, - north boundaries greater or equal than the south boundaries, - radial boundaries positive or zero, - top boundaries greater or equal than the bottom boundaries, - longitudinal boundaries within the [-180, 360] degrees interval, - longitudinal interval must not be greater than one turn around the globe. Some valid tesseroids have its west boundary greater than the east one, e.g. ``(350, 10, ...)``. On these cases the ``_longitude_continuity`` function is applied in order to move the longitudinal coordinates to the [-180, 180) interval. Any valid tesseroid should have east boundaries greater than the west boundaries before or after applying longitude continuity. Parameters ---------- tesseroids : 2d-array Array containing the boundaries of the tesseroids in the following order: ``w``, ``e``, ``s``, ``n``, ``bottom``, ``top``. Longitudinal and latitudinal boundaries must be in degrees. The array must have the following shape: (``n_tesseroids``, 6), where ``n_tesseroids`` is the total number of tesseroids. Returns ------- tesseroids : 2d-array Array containing the boundaries of the tesseroids. If no longitude continuity needs to be applied, the returned array is the same one as the orignal. Otherwise, it's copied and its longitudinal boundaries are modified. """ west, east, south, north, bottom, top = tuple(tesseroids[:, i] for i in range(6)) err_msg = "Invalid tesseroid or tesseroids. " # Check if latitudinal boundaries are inside the [-90, 90] interval invalid = np.logical_or( np.logical_or(south < -90, south > 90), np.logical_or(north < -90, north > 90) ) if (invalid).any(): err_msg += ( "The latitudinal boundaries must be inside the [-90, 90] " + "degrees interval.\n" ) for tess in tesseroids[invalid]: err_msg += "\tInvalid tesseroid: {}\n".format(tess) raise ValueError(err_msg) # Check if south boundary is not greater than the corresponding north # boundary invalid = south > north if (invalid).any(): err_msg += "The south boundary can't be greater than the north one.\n" for tess in tesseroids[invalid]: err_msg += "\tInvalid tesseroid: {}\n".format(tess) raise ValueError(err_msg) # Check if radial boundaries are positive or zero invalid = np.logical_or(bottom < 0, top < 0) if (invalid).any(): err_msg += "The bottom and top radii should be positive or zero.\n" for tess in tesseroids[invalid]: err_msg += "\tInvalid tesseroid: {}\n".format(tess) raise ValueError(err_msg) # Check if top boundary is not greater than the corresponding bottom # boundary invalid = bottom > top if (invalid).any(): err_msg += "The bottom radius boundary can't be greater than the top one.\n" for tess in tesseroids[invalid]: err_msg += "\tInvalid tesseroid: {}\n".format(tess) raise ValueError(err_msg) # Check if longitudinal boundaries are inside the [-180, 360] interval invalid = np.logical_or( np.logical_or(west < -180, west > 360), np.logical_or(east < -180, east > 360) ) if (invalid).any(): err_msg += ( "The longitudinal boundaries must be inside the [-180, 360] " + "degrees interval.\n" ) for tess in tesseroids[invalid]: err_msg += "\tInvalid tesseroid: {}\n".format(tess) raise ValueError(err_msg) # Apply longitude continuity if w > e if (west > east).any(): tesseroids = _longitude_continuity(tesseroids) west, east, south, north, bottom, top = tuple( tesseroids[:, i] for i in range(6) ) # Check if west boundary is not greater than the corresponding east # boundary, even after applying the longitude continuity invalid = west > east if (invalid).any(): err_msg += "The west boundary can't be greater than the east one.\n" for tess in tesseroids[invalid]: err_msg += "\tInvalid tesseroid: {}\n".format(tess) raise ValueError(err_msg) # Check if the longitudinal interval is not grater than one turn around the # globe invalid = east - west > 360 if (invalid).any(): err_msg += ( "The difference between east and west boundaries cannot be greater than " + "one turn around the globe.\n" ) for tess in tesseroids[invalid]: err_msg += "\tInvalid tesseroid: {}\n".format(tess) raise ValueError(err_msg) return tesseroids def _check_points_outside_tesseroids( coordinates, tesseroids ): # pylint: disable=too-many-locals """ Check if computation points are not inside the tesseroids Parameters ---------- coordinates : 2d-array Array containing the coordinates of the computation points in the following order: ``longitude``, ``latitude`` and ``radius``. Both ``longitude`` and ``latitude`` must be in degrees. The array must have the following shape: (3, ``n_points``), where ``n_points`` is the total number of computation points. tesseroids : 2d-array Array containing the boundaries of the tesseroids in the following order: ``w``, ``e``, ``s``, ``n``, ``bottom``, ``top``. Longitudinal and latitudinal boundaries must be in degrees. The array must have the following shape: (``n_tesseroids``, 6), where ``n_tesseroids`` is the total number of tesseroids. This array of tesseroids must have longitude continuity and valid boundaries. Run ``_check_tesseroids`` before. """ longitude, latitude, radius = coordinates[:] west, east, south, north, bottom, top = tuple(tesseroids[:, i] for i in range(6)) # Longitudinal boundaries of the tesseroid must be compared with # longitudinal coordinates of computation points when moved to # [0, 360) and [-180, 180). longitude_360 = longitude % 360 longitude_180 = ((longitude + 180) % 360) - 180 inside_longitude = np.logical_or( np.logical_and( west < longitude_360[:, np.newaxis], longitude_360[:, np.newaxis] < east ), np.logical_and( west < longitude_180[:, np.newaxis], longitude_180[:, np.newaxis] < east ), ) inside_latitude = np.logical_and( south < latitude[:, np.newaxis], latitude[:, np.newaxis] < north ) inside_radius = np.logical_and( bottom < radius[:, np.newaxis], radius[:, np.newaxis] < top ) # Build array of booleans. # The (i, j) element is True if the computation point i is inside the # tesseroid j. inside = inside_longitude * inside_latitude * inside_radius if inside.any(): err_msg = ( "Found computation point inside tesseroid. " + "Computation points must be outside of tesseroids.\n" ) for point_i, tess_i in np.argwhere(inside): err_msg += "\tComputation point '{}' found inside tesseroid '{}'\n".format( coordinates[:, point_i], tesseroids[tess_i, :] ) raise ValueError(err_msg) def _longitude_continuity(tesseroids): """ Modify longitudinal boundaries of tesseroids to ensure longitude continuity Longitudinal boundaries of the tesseroids are moved to the ``[-180, 180)`` degrees interval in case the ``west`` boundary is numerically greater than the ``east`` one. Parameters ---------- tesseroids : 2d-array Longitudinal and latitudinal boundaries must be in degrees. Array containing the boundaries of each tesseroid: ``w``, ``e``, ``s``, ``n``, ``bottom``, ``top`` under a geocentric spherical coordinate system. The array must have the following shape: (``n_tesseroids``, 6), where ``n_tesseroids`` is the total number of tesseroids. Returns ------- tesseroids : 2d-array Modified boundaries of the tesseroids. """ # Copy the tesseroids to avoid modifying the original tesseroids array tesseroids = tesseroids.copy() west, east = tesseroids[:, 0], tesseroids[:, 1] tess_to_be_changed = west > east east[tess_to_be_changed] = ((east[tess_to_be_changed] + 180) % 360) - 180 west[tess_to_be_changed] = ((west[tess_to_be_changed] + 180) % 360) - 180 return tesseroids