# Copyright (c) 2018 The Harmonica Developers.
# Distributed under the terms of the BSD 3-Clause License.
# SPDX-License-Identifier: BSD-3-Clause
#
# This code is part of the Fatiando a Terra project (https://www.fatiando.org)
#
"""
Forward modelling for tesseroids
"""
from numba import jit
import numpy as np
from numpy.polynomial.legendre import leggauss
from ..constants import GRAVITATIONAL_CONST
from .utils import distance_spherical
from .point_mass import (
kernel_potential_spherical,
kernel_g_z_spherical,
)
STACK_SIZE = 100
MAX_DISCRETIZATIONS = 100000
GLQ_DEGREES = (2, 2, 2)
DISTANCE_SIZE_RATII = {"potential": 1, "g_z": 2.5}
[docs]def tesseroid_gravity(
coordinates,
tesseroids,
density,
field,
distance_size_ratii=None,
glq_degrees=GLQ_DEGREES,
stack_size=STACK_SIZE,
max_discretizations=MAX_DISCRETIZATIONS,
radial_adaptive_discretization=False,
dtype=np.float64,
disable_checks=False,
): # pylint: disable=too-many-locals, too-many-arguments
"""
Compute gravitational field of tesseroids on computation points.
.. warning::
The ``g_z`` field returns the downward component of the gravitational
acceleration on the local North oriented coordinate system.
It is equivalent to the opposite of the radial component, therefore
it's positive if the acceleration vector points inside the spheroid.
Parameters
----------
coordinates : list or 1d-array
List or array containing ``longitude``, ``latitude`` and ``radius`` of
the computation points defined on a spherical geocentric coordinate
system.
Both ``longitude`` and ``latitude`` should be in degrees and ``radius``
in meters.
tesseroids : list or 1d-array
List or array containing the coordinates of the tesseroid:
``w``, ``e``, ``s``, ``n``, ``bottom``, ``top`` under a geocentric
spherical coordinate system.
The longitudinal and latitudinal boundaries should be in degrees, while
the radial ones must be in meters.
density : list or array
List or array containing the density of each tesseroid in kg/m^3.
field : str
Gravitational field that wants to be computed.
The available fields are:
- Gravitational potential: ``potential``
- Downward acceleration: ``g_z``
distance_size_ratio : dict or None (optional)
Dictionary containing distance-size ratii for each gravitational field
used on the adaptive discretization algorithm.
Values must be the available fields and keys should be the desired
distance-size ratio.
The greater the distance-size ratio, more discretizations will occur,
increasing the accuracy of the numerical approximation but also the
computation time.
If None, the default values of distance-size ratii will be used:
D = 1 for the potential and D = 2.5 for the gradient.
Default to None.
glq_degrees : tuple (optional)
List containing the GLQ degrees used on each direction:
``glq_degree_longitude``, ``glq_degree_latitude``,
``glq_degree_radius``.
The GLQ degree specifies how many point masses will be created along
each direction.
Increasing the GLQ degree will increase the accuracy of the numerical
approximation, but also the computation time.
Default ``[2, 2, 2]``.
stack_size : int (optional)
Size of the tesseroid stack used on the adaptive discretization
algorithm.
If the algorithm will perform too many splits, please increase the
stack size.
max_discretizations : int (optional)
Maximum number of splits made by the adaptive discretization algorithm.
If the algorithm will perform too many splits, please increase the
maximum number of splits.
radial_adaptive_discretization : bool (optional)
If ``False``, the adaptive discretization algorithm will split the
tesseroid only on the horizontal direction.
If ``True``, it will perform a three dimensional adaptive
discretization, splitting the tesseroids on every direction.
Default ``False``.
dtype : data-type (optional)
Data type assigned to the resulting gravitational field. Default to
``np.float64``.
disable_checks : bool (optional)
Flag that controls whether to perform a sanity check on the model.
Should be set to ``True`` only when it is certain that the input model
is valid and it does not need to be checked.
Default to ``False``.
Returns
-------
result : array
Gravitational field generated by the tesseroids on the computation
points.
Examples
--------
>>> # Get WGS84 ellipsoid from the Boule package
>>> import boule
>>> ellipsoid = boule.WGS84
>>> # Define tesseroid of 1km of thickness with top surface on the mean
>>> # Earth radius
>>> thickness = 1000
>>> top = ellipsoid.mean_radius
>>> bottom = top - thickness
>>> w, e, s, n = -1.0, 1.0, -1.0, 1.0
>>> tesseroid = [w, e, s, n, bottom, top]
>>> # Set a density of 2670 kg/m^3
>>> density = 2670.0
>>> # Define computation point located on the top surface of the tesseroid
>>> coordinates = [0, 0, ellipsoid.mean_radius]
>>> # Compute radial component of the gravitational gradient in mGal
>>> tesseroid_gravity(coordinates, tesseroid, density, field="g_z")
array(112.54539933)
"""
kernels = {"potential": kernel_potential_spherical, "g_z": kernel_g_z_spherical}
if field not in kernels:
raise ValueError("Gravitational field {} not recognized".format(field))
# Figure out the shape and size of the output array
cast = np.broadcast(*coordinates[:3])
result = np.zeros(cast.size, dtype=dtype)
# Convert coordinates, tesseroids and density to arrays
coordinates = tuple(np.atleast_1d(i).ravel() for i in coordinates[:3])
tesseroids = np.atleast_2d(tesseroids)
density = np.atleast_1d(density).ravel()
# Sanity checks for tesseroids and computation points
if not disable_checks:
if density.size != tesseroids.shape[0]:
raise ValueError(
"Number of elements in density ({}) ".format(density.size)
+ "mismatch the number of tesseroids ({})".format(tesseroids.shape[0])
)
tesseroids = _check_tesseroids(tesseroids)
_check_points_outside_tesseroids(coordinates, tesseroids)
# Get value of D (distance_size_ratio)
if distance_size_ratii is None:
distance_size_ratii = DISTANCE_SIZE_RATII
if field not in distance_size_ratii:
raise ValueError(
'Gravitational field "{}" not found on distance_size_ratii dictionary'.format(
field
)
)
distance_size_ratio = distance_size_ratii[field]
# Get GLQ unscaled nodes, weights and number of nodes for each small
# tesseroid
glq_nodes, glq_weights = glq_nodes_weights(glq_degrees)
# Initialize arrays to perform memory allocation only once
stack = np.empty((stack_size, 6), dtype=dtype)
small_tesseroids = np.empty((max_discretizations, 6), dtype=dtype)
# Compute gravitational field
jit_tesseroid_gravity(
coordinates,
tesseroids,
density,
stack,
small_tesseroids,
result,
distance_size_ratio,
radial_adaptive_discretization,
glq_nodes,
glq_weights,
kernels[field],
)
result *= GRAVITATIONAL_CONST
# Convert to more convenient units
if field == "g_z":
result *= 1e5 # SI to mGal
return result.reshape(cast.shape)
@jit(nopython=True)
def jit_tesseroid_gravity(
coordinates,
tesseroids,
density,
stack,
small_tesseroids,
result,
distance_size_ratio,
radial_discretization,
glq_nodes,
glq_weights,
kernel,
): # pylint: disable=too-many-locals,too-many-arguments,invalid-name
"""
Compute gravitational field of tesseroids on computations points
Perform adaptive discretization, convert each small tesseroid to equivalent
point masses through GLQ and use point masses kernel functions to compute
the gravitational field.
Parameters
----------
coordinates : tuple
Tuple containing the coordinates of the computation points in spherical
geocentric coordinate system in the following order:
``longitude``, ``latitude``, ``radius``.
Each element of the tuple must be a 1d array.
Both ``longitude`` and ``latitude`` should be in degrees and ``radius``
in meters.
tesseroids : 2d-array
Array containing the boundaries of each tesseroid:
``w``, ``e``, ``s``, ``n``, ``bottom``, ``top`` under a geocentric
spherical coordinate system.
The array must have the following shape: (``n_tesseroids``, 6), where
``n_tesseroids`` is the total number of tesseroids.
All tesseroids must have valid boundary coordinates.
Horizontal boundaries should be in degrees while radial boundaries
should be in meters.
density : 1d-array
Density of each tesseroid in SI units.
stack : 2d-array
Empty array where tesseroids created by adaptive discretization
algorithm will be processed.
small_tesseroids : 2d-array
Empty array where smaller tesseroids created by adaptive discretization
algorithm will be stored.
point_masses : 2d-array
Empty array where equivalent point masses will be stored.
weights : 1d-array
Empty array where the GLQ weight of each point mass will be stored.
result : 1d-array
Array where the gravitational effect of each tesseroid will be added.
distance_size_ratio : float
Value of the distance size ratio.
radial_discretization : bool
If ``False``, the adaptive discretization algorithm will split the
tesseroid only on the horizontal direction.
If ``True``, it will perform a three dimensional adaptive
discretization, splitting the tesseroids on every direction.
glq_nodes : list
List containing unscaled GLQ nodes.
glq_weights : list
List containing GLQ weights of the nodes.
kernel : func
Kernel function for the gravitational field of point masses.
"""
# Get coordinates of the observation points
# and precompute trigonometric functions
longitude, latitude, radius = coordinates[:]
longitude_rad = np.radians(longitude)
cosphi = np.cos(np.radians(latitude))
sinphi = np.sin(np.radians(latitude))
for l in range(longitude.size):
for m in range(tesseroids.shape[0]):
# Apply adaptive discretization on tesseroid
n_splits = _adaptive_discretization(
(longitude[l], latitude[l], radius[l]),
tesseroids[m, :],
distance_size_ratio,
stack,
small_tesseroids,
radial_discretization,
)
# Compute effect of the tesseroid through GLQ
for tess_index in range(n_splits):
tesseroid = small_tesseroids[tess_index, :]
result[l] += gauss_legendre_quadrature(
longitude_rad[l],
cosphi[l],
sinphi[l],
radius[l],
tesseroid,
density[m],
glq_nodes,
glq_weights,
kernel,
)
@jit(nopython=True)
def gauss_legendre_quadrature(
longitude,
cosphi,
sinphi,
radius,
tesseroid,
density,
glq_nodes,
glq_weights,
kernel,
): # pylint: disable=too-many-locals
r"""
Compute the effect of a tesseroid on a single observation point through GLQ
The tesseroid is converted into a set of point masses located on the
scaled nodes of the Gauss-Legendre Quadrature. The number of point masses
created from each tesseroid is equal to the product of the GLQ degrees for
each direction (:math:`N_r`, :math:`N_\lambda`, :math:`N_\phi`). The mass
of each point mass is defined as the product of the tesseroid density
(:math:`\rho`), the GLQ weights for each direction (:math:`W_i^r`,
:math:`W_j^\phi`, :math:`W_k^\lambda`), the scale constant :math:`A` and
the :math:`\kappa` factor evaluated on the coordinates of the point mass.
Parameters
----------
longitude : float
Longitudinal coordinate of the observation points in radians.
cosphi : float
Cosine of the latitudinal coordinate of the observation point in
radians.
sinphi : float
Sine of the latitudinal coordinate of the observation point in
radians.
radius : float
Radial coordinate of the observation point in meters.
tesseroids : 1d-array
Array containing the boundaries of the tesseroid:
``w``, ``e``, ``s``, ``n``, ``bottom``, ``top``.
Horizontal boundaries should be in degrees and radial boundaries in
meters.
density : float
Density of the tesseroid in SI units.
glq_nodes : list
Unscaled location of GLQ nodes for each direction.
glq_weights : list
GLQ weigths for each node for each direction.
kernel : func
Kernel function for the gravitational field of point masses.
"""
# Get tesseroid boundaries
w, e, s, n, bottom, top = tesseroid[:]
# Calculate the A factor for the tesseroid
a_factor = 1 / 8 * np.radians(e - w) * np.radians(n - s) * (top - bottom)
# Unpack nodes and weights
lon_nodes, lat_nodes, rad_nodes = glq_nodes[:]
lon_weights, lat_weights, rad_weights = glq_weights[:]
# Compute effect of the tesseroid on the observation point
# by iterating over the location of the point masses
# (move the iteration along the longitudinal nodes to the bottom for
# optimization: reduce the number of times that the trigonometric functions
# are evaluated)
result = 0.0
for j, lat_node in enumerate(lat_nodes):
# Get the latitude of the point mass
latitude_p = np.radians(0.5 * (n - s) * lat_node + 0.5 * (n + s))
cosphi_p = np.cos(latitude_p)
sinphi_p = np.sin(latitude_p)
for k, rad_node in enumerate(rad_nodes):
# Get the radius of the point mass
radius_p = 0.5 * (top - bottom) * rad_node + 0.5 * (top + bottom)
# Get kappa constant for the point mass
kappa = radius_p ** 2 * cosphi_p
for i, lon_node in enumerate(lon_nodes):
# Get the longitude of the point mass
longitude_p = np.radians(0.5 * (e - w) * lon_node + 0.5 * (e + w))
# Compute the mass of the point mass
mass = (
density
* a_factor
* kappa
* lon_weights[i]
* lat_weights[j]
* rad_weights[k]
)
# Add effect of the current point mass to the result
result += mass * kernel(
longitude,
cosphi,
sinphi,
radius,
longitude_p,
cosphi_p,
sinphi_p,
radius_p,
)
return result
def glq_nodes_weights(glq_degrees):
"""
Calculate GLQ unscaled nodes and weights
Parameters
----------
glq_degrees : list
List of GLQ degrees for each direction: ``longitude``, ``latitude``,
``radius``.
Returns
-------
glq_nodes : list
Unscaled GLQ nodes for each direction: ``longitude``, ``latitude``,
``radius``.
glq_weights : list
GLQ weights for each node on each direction: ``longitude``,
``latitude``, ``radius``.
"""
# Unpack GLQ degrees
lon_degree, lat_degree, rad_degree = glq_degrees[:]
# Get nodes coordinates and weights
lon_node, lon_weights = leggauss(lon_degree)
lat_node, lat_weights = leggauss(lat_degree)
rad_node, rad_weights = leggauss(rad_degree)
# Reorder nodes and weights
glq_nodes = (lon_node, lat_node, rad_node)
glq_weights = (lon_weights, lat_weights, rad_weights)
return glq_nodes, glq_weights
@jit(nopython=True)
def _adaptive_discretization(
coordinates,
tesseroid,
distance_size_ratio,
stack,
small_tesseroids,
radial_discretization=False,
):
"""
Perform the adaptive discretization algorithm on a tesseroid
It apply the three or two dimensional adaptive discretization algorithm on
a tesseroid after a single computation point.
Parameters
----------
coordinates : array
Array containing ``longitude``, ``latitude`` and ``radius`` of a single
computation point.
tesseroid : array
Array containing the boundaries of the tesseroid.
distance_size_ratio : float
Value for the distance-size ratio. A greater value will perform more
discretizations.
stack : 2d-array
Array with shape ``(6, stack_size)`` that will temporarly hold the
small tesseroids that are not yet processed.
If too many discretizations will take place, increase the
``stack_size``.
small_tesseroids : 2d-array
Array with shape ``(6, max_discretizations)`` that will contain every
small tesseroid produced by the adaptive discretization algorithm.
If too many discretizations will take place, increase the
``max_discretizations``.
radial_discretization : bool (optional)
If ``True`` the three dimensional adaptive discretization will be
applied.
If ``False`` the two dimensional adaptive discretization will be
applied, i.e. the tesseroid will only be split on the ``longitude`` and
``latitude`` directions.
Default ``False``.
Returns
-------
n_splits : int
Total number of small tesseroids generated by the algorithm.
"""
# Create stack of tesseroids
stack[0] = tesseroid
stack_top = 0
n_splits = 0
while stack_top >= 0:
# Pop the first tesseroid from the stack
tesseroid = stack[stack_top]
stack_top -= 1
# Get its dimensions
l_lon, l_lat, l_rad = _tesseroid_dimensions(tesseroid)
# Get distance between computation point and center of tesseroid
distance = _distance_tesseroid_point(coordinates, tesseroid)
# Check inequality
n_lon, n_lat, n_rad = 1, 1, 1
if distance / l_lon < distance_size_ratio:
n_lon = 2
if distance / l_lat < distance_size_ratio:
n_lat = 2
if distance / l_rad < distance_size_ratio and radial_discretization:
n_rad = 2
# Apply discretization
if n_lon * n_lat * n_rad > 1:
# Raise error if stack overflow
# Number of tesseroids in stack = stack_top + 1
if (stack_top + 1) + n_lon * n_lat * n_rad > stack.shape[0]:
raise OverflowError("Stack Overflow. Try to increase the stack size.")
stack_top = _split_tesseroid(
tesseroid, n_lon, n_lat, n_rad, stack, stack_top
)
else:
# Raise error if small_tesseroids overflow
if n_splits + 1 > small_tesseroids.shape[0]:
raise OverflowError(
"Exceeded maximum discretizations."
+ " Please increase the maximum_discretizations."
)
small_tesseroids[n_splits] = tesseroid
n_splits += 1
return n_splits
@jit(nopython=True)
def _split_tesseroid(
tesseroid, n_lon, n_lat, n_rad, stack, stack_top
): # pylint: disable=too-many-locals
"""
Split tesseroid along each dimension
"""
w, e, s, n, bottom, top = tesseroid[:]
# Compute differential distance
d_lon = (e - w) / n_lon
d_lat = (n - s) / n_lat
d_rad = (top - bottom) / n_rad
for i in range(n_lon):
for j in range(n_lat):
for k in range(n_rad):
stack_top += 1
stack[stack_top, 0] = w + d_lon * i
stack[stack_top, 1] = w + d_lon * (i + 1)
stack[stack_top, 2] = s + d_lat * j
stack[stack_top, 3] = s + d_lat * (j + 1)
stack[stack_top, 4] = bottom + d_rad * k
stack[stack_top, 5] = bottom + d_rad * (k + 1)
return stack_top
@jit(nopython=True)
def _tesseroid_dimensions(tesseroid):
"""
Calculate the dimensions of the tesseroid.
"""
w, e, s, n, bottom, top = tesseroid[:]
w, e, s, n = np.radians(w), np.radians(e), np.radians(s), np.radians(n)
latitude_center = (n + s) / 2
l_lat = top * np.arccos(np.sin(n) * np.sin(s) + np.cos(n) * np.cos(s))
l_lon = top * np.arccos(
np.sin(latitude_center) ** 2 + np.cos(latitude_center) ** 2 * np.cos(e - w)
)
l_rad = top - bottom
return l_lon, l_lat, l_rad
@jit(nopython=True)
def _distance_tesseroid_point(
coordinates, tesseroid
): # pylint: disable=too-many-locals
"""
Distance between a computation point and the center of a tesseroid
"""
# Get center of the tesseroid
w, e, s, n, bottom, top = tesseroid[:]
longitude_p = (w + e) / 2
latitude_p = (s + n) / 2
radius_p = (bottom + top) / 2
# Get distance between computation point and tesseroid center
distance = distance_spherical(coordinates, (longitude_p, latitude_p, radius_p))
return distance
def _check_tesseroids(tesseroids): # pylint: disable=too-many-branches
"""
Check if tesseroids boundaries are well defined
A valid tesseroid should have:
- latitudinal boundaries within the [-90, 90] degrees interval,
- north boundaries greater or equal than the south boundaries,
- radial boundaries positive or zero,
- top boundaries greater or equal than the bottom boundaries,
- longitudinal boundaries within the [-180, 360] degrees interval,
- longitudinal interval must not be greater than one turn around the
globe.
Some valid tesseroids have its west boundary greater than the east one,
e.g. ``(350, 10, ...)``. On these cases the ``_longitude_continuity``
function is applied in order to move the longitudinal coordinates to the
[-180, 180) interval. Any valid tesseroid should have east boundaries
greater than the west boundaries before or after applying longitude
continuity.
Parameters
----------
tesseroids : 2d-array
Array containing the boundaries of the tesseroids in the following
order: ``w``, ``e``, ``s``, ``n``, ``bottom``, ``top``.
Longitudinal and latitudinal boundaries must be in degrees.
The array must have the following shape: (``n_tesseroids``, 6), where
``n_tesseroids`` is the total number of tesseroids.
Returns
-------
tesseroids : 2d-array
Array containing the boundaries of the tesseroids.
If no longitude continuity needs to be applied, the returned array is
the same one as the orignal.
Otherwise, it's copied and its longitudinal boundaries are modified.
"""
west, east, south, north, bottom, top = tuple(tesseroids[:, i] for i in range(6))
err_msg = "Invalid tesseroid or tesseroids. "
# Check if latitudinal boundaries are inside the [-90, 90] interval
invalid = np.logical_or(
np.logical_or(south < -90, south > 90), np.logical_or(north < -90, north > 90)
)
if (invalid).any():
err_msg += (
"The latitudinal boundaries must be inside the [-90, 90] "
+ "degrees interval.\n"
)
for tess in tesseroids[invalid]:
err_msg += "\tInvalid tesseroid: {}\n".format(tess)
raise ValueError(err_msg)
# Check if south boundary is not greater than the corresponding north
# boundary
invalid = south > north
if (invalid).any():
err_msg += "The south boundary can't be greater than the north one.\n"
for tess in tesseroids[invalid]:
err_msg += "\tInvalid tesseroid: {}\n".format(tess)
raise ValueError(err_msg)
# Check if radial boundaries are positive or zero
invalid = np.logical_or(bottom < 0, top < 0)
if (invalid).any():
err_msg += "The bottom and top radii should be positive or zero.\n"
for tess in tesseroids[invalid]:
err_msg += "\tInvalid tesseroid: {}\n".format(tess)
raise ValueError(err_msg)
# Check if top boundary is not greater than the corresponding bottom
# boundary
invalid = bottom > top
if (invalid).any():
err_msg += "The bottom radius boundary can't be greater than the top one.\n"
for tess in tesseroids[invalid]:
err_msg += "\tInvalid tesseroid: {}\n".format(tess)
raise ValueError(err_msg)
# Check if longitudinal boundaries are inside the [-180, 360] interval
invalid = np.logical_or(
np.logical_or(west < -180, west > 360), np.logical_or(east < -180, east > 360)
)
if (invalid).any():
err_msg += (
"The longitudinal boundaries must be inside the [-180, 360] "
+ "degrees interval.\n"
)
for tess in tesseroids[invalid]:
err_msg += "\tInvalid tesseroid: {}\n".format(tess)
raise ValueError(err_msg)
# Apply longitude continuity if w > e
if (west > east).any():
tesseroids = _longitude_continuity(tesseroids)
west, east, south, north, bottom, top = tuple(
tesseroids[:, i] for i in range(6)
)
# Check if west boundary is not greater than the corresponding east
# boundary, even after applying the longitude continuity
invalid = west > east
if (invalid).any():
err_msg += "The west boundary can't be greater than the east one.\n"
for tess in tesseroids[invalid]:
err_msg += "\tInvalid tesseroid: {}\n".format(tess)
raise ValueError(err_msg)
# Check if the longitudinal interval is not grater than one turn around the
# globe
invalid = east - west > 360
if (invalid).any():
err_msg += (
"The difference between east and west boundaries cannot be greater than "
+ "one turn around the globe.\n"
)
for tess in tesseroids[invalid]:
err_msg += "\tInvalid tesseroid: {}\n".format(tess)
raise ValueError(err_msg)
return tesseroids
def _check_points_outside_tesseroids(
coordinates, tesseroids
): # pylint: disable=too-many-locals
"""
Check if computation points are not inside the tesseroids
Parameters
----------
coordinates : 2d-array
Array containing the coordinates of the computation points in the
following order: ``longitude``, ``latitude`` and ``radius``.
Both ``longitude`` and ``latitude`` must be in degrees.
The array must have the following shape: (3, ``n_points``), where
``n_points`` is the total number of computation points.
tesseroids : 2d-array
Array containing the boundaries of the tesseroids in the following
order: ``w``, ``e``, ``s``, ``n``, ``bottom``, ``top``.
Longitudinal and latitudinal boundaries must be in degrees.
The array must have the following shape: (``n_tesseroids``, 6), where
``n_tesseroids`` is the total number of tesseroids.
This array of tesseroids must have longitude continuity and valid
boundaries.
Run ``_check_tesseroids`` before.
"""
longitude, latitude, radius = coordinates[:]
west, east, south, north, bottom, top = tuple(tesseroids[:, i] for i in range(6))
# Longitudinal boundaries of the tesseroid must be compared with
# longitudinal coordinates of computation points when moved to
# [0, 360) and [-180, 180).
longitude_360 = longitude % 360
longitude_180 = ((longitude + 180) % 360) - 180
inside_longitude = np.logical_or(
np.logical_and(
west < longitude_360[:, np.newaxis], longitude_360[:, np.newaxis] < east
),
np.logical_and(
west < longitude_180[:, np.newaxis], longitude_180[:, np.newaxis] < east
),
)
inside_latitude = np.logical_and(
south < latitude[:, np.newaxis], latitude[:, np.newaxis] < north
)
inside_radius = np.logical_and(
bottom < radius[:, np.newaxis], radius[:, np.newaxis] < top
)
# Build array of booleans.
# The (i, j) element is True if the computation point i is inside the
# tesseroid j.
inside = inside_longitude * inside_latitude * inside_radius
if inside.any():
err_msg = (
"Found computation point inside tesseroid. "
+ "Computation points must be outside of tesseroids.\n"
)
for point_i, tess_i in np.argwhere(inside):
err_msg += "\tComputation point '{}' found inside tesseroid '{}'\n".format(
coordinates[:, point_i], tesseroids[tess_i, :]
)
raise ValueError(err_msg)
def _longitude_continuity(tesseroids):
"""
Modify longitudinal boundaries of tesseroids to ensure longitude continuity
Longitudinal boundaries of the tesseroids are moved to the ``[-180, 180)``
degrees interval in case the ``west`` boundary is numerically greater than
the ``east`` one.
Parameters
----------
tesseroids : 2d-array
Longitudinal and latitudinal boundaries must be in degrees.
Array containing the boundaries of each tesseroid:
``w``, ``e``, ``s``, ``n``, ``bottom``, ``top`` under a geocentric
spherical coordinate system.
The array must have the following shape: (``n_tesseroids``, 6), where
``n_tesseroids`` is the total number of tesseroids.
Returns
-------
tesseroids : 2d-array
Modified boundaries of the tesseroids.
"""
# Copy the tesseroids to avoid modifying the original tesseroids array
tesseroids = tesseroids.copy()
west, east = tesseroids[:, 0], tesseroids[:, 1]
tess_to_be_changed = west > east
east[tess_to_be_changed] = ((east[tess_to_be_changed] + 180) % 360) - 180
west[tess_to_be_changed] = ((west[tess_to_be_changed] + 180) % 360) - 180
return tesseroids