boule.Ellipsoid#
- class boule.Ellipsoid(name, semimajor_axis, flattening, geocentric_grav_const, angular_velocity, long_name=None, reference=None, comments=None)[source]#
A rotating oblate ellipsoid.
The ellipsoid is defined by four parameters: semimajor axis, flattening, geocentric gravitational constant, and angular velocity. It spins around its semiminor axis and has constant gravity potential at its surface. The internal density structure of the ellipsoid is unspecified but must be such that the constant potential condition is satisfied.
This class is read-only: Input parameters and attributes cannot be changed after instantiation.
Units: All input parameters and derived attributes are in SI units.
- Parameters:
- name
str
A short name for the ellipsoid, for example
"WGS84"
.- semimajor_axis
float
The semimajor axis of the ellipsoid. The equatorial (large) radius. Definition: \(a\). Units: \(m\).
- flattening
float
The (first) flattening of the ellipsoid. Definition: \(f = (a - b)/a\). Units: adimensional.
- geocentric_grav_const
float
The geocentric gravitational constant. The product of the mass of the ellipsoid \(M\) and the gravitational constant \(G\). Definition: \(GM\). Units: \(m^3.s^{-2}\).
- angular_velocity
float
The angular velocity of the rotating ellipsoid. Definition: \(\omega\). Units: \(\\rad.s^{-1}\).
- long_name
str
orNone
A long name for the ellipsoid, for example
"World Geodetic System 1984"
(optional).- reference
str
orNone
Citation for the ellipsoid parameter values (optional).
- comments
str
orNone
Additional comments regarding the ellipsoid (optional).
- name
Notes
Caution
Use
boule.Sphere
if you desire zero flattening because there are singularities for this particular case in the normal gravity calculations.Examples
We can define an ellipsoid by setting the 4 key numerical parameters and some metadata about where they came from:
>>> ellipsoid = Ellipsoid( ... name="WGS84", ... long_name="World Geodetic System 1984", ... semimajor_axis=6378137, ... flattening=1 / 298.257223563, ... geocentric_grav_const=3986004.418e8, ... angular_velocity=7292115e-11, ... reference="Hofmann-Wellenhof & Moritz (2006)", ... comments="This is the same as the boule WGS84 ellipsoid.", ... ) >>> print(ellipsoid) WGS84 - World Geodetic System 1984 Oblate ellipsoid: • Semimajor axis: 6378137 m • Flattening: 0.0033528106647474805 • GM: 398600441800000.0 m³/s² • Angular velocity: 7.292115e-05 rad/s Source: Hofmann-Wellenhof & Moritz (2006) Comments: This is the same as the boule WGS84 ellipsoid.
>>> print(ellipsoid.long_name) World Geodetic System 1984
The class then defines several derived attributes based on the input parameters:
>>> print(f"{ellipsoid.semiminor_axis:.4f} m") 6356752.3142 m >>> print(f"{ellipsoid.linear_eccentricity:.8f} m") 521854.00842339 m >>> print(f"{ellipsoid.first_eccentricity:.13e}") 8.1819190842621e-02 >>> print(f"{ellipsoid.second_eccentricity:.13e}") 8.2094437949696e-02 >>> print(f"{ellipsoid.mean_radius:.4f} m") 6370994.4018 m >>> print(f"{ellipsoid.semiaxes_mean_radius:.4f} m") 6371008.7714 m >>> print(f"{ellipsoid.volume_equivalent_radius:.4f} m") 6371000.7900 m >>> print(f"{ellipsoid.mass:.10e} kg") 5.9721684941e+24 kg >>> print(f"{ellipsoid.mean_density:.0f} kg/m³") 5513 kg/m³ >>> print(f"{ellipsoid.volume * 1e-9:.5e} km³") 1.08321e+12 km³ >>> print(f"{ellipsoid.area:.10e} m²") 5.1006562172e+14 m² >>> print(f"{ellipsoid.area_equivalent_radius:0.4f} m") 6371007.1809 m >>> print(f"{ellipsoid.gravity_equator:.10f} m/s²") 9.7803253359 m/s² >>> print(f"{ellipsoid.gravity_pole:.10f} m/s²") 9.8321849379 m/s² >>> print(f"{ellipsoid.reference_normal_gravity_potential:.3f} m²/s²") 62636851.715 m²/s²
Use the class methods for calculating normal gravity and other geometric quantities.
- Attributes:
area
The area of the ellipsoid.
area_equivalent_radius
The area equivalent radius of the ellipsoid.
eccentricity
Alias for the first eccentricity.
first_eccentricity
The (first) eccentricity of the ellipsoid.
gravity_equator
The norm of the gravity acceleration vector (gravitational + centrifugal accelerations) at the equator on the surface of the ellipsoid.
gravity_pole
The norm of the gravity acceleration vector (gravitational + centrifugal accelerations) at the poles on the surface of the ellipsoid.
linear_eccentricity
The linear eccentricity of the ellipsoid.
mass
The mass of the ellipsoid.
mean_density
The mean density of the ellipsoid.
mean_radius
The mean radius of the ellipsoid.
reference_normal_gravity_potential
The normal gravity potential on the surface of the ellipsoid.
second_eccentricity
The second eccentricity of the ellipsoid.
semiaxes_mean_radius
The arithmetic mean radius of the ellipsoid semi-axes [Moritz1988].
semimajor_axis_longitude
The semimajor axis longitude of the ellipsoid is equal to zero.
semimedium_axis
The semimedium axis of the ellipsoid is equal to its semimajor axis.
semiminor_axis
The semiminor (small/polar) axis of the ellipsoid.
thirdflattening
The third flattening of the ellipsoid (used in geodetic calculations).
volume
The volume bounded by the ellipsoid.
volume_equivalent_radius
The volume equivalent radius of the ellipsoid.
Methods
centrifugal_potential
(latitude, height)Centrifugal potential at the given geodetic latitude and height above the ellipsoid.
ellipsoidal_harmonic_to_geodetic
(longitude, ...)Convert from ellipsoidal-harmonic coordinates to geodetic coordinates.
geocentric_radius
(latitude[, geodetic])Radial distance from the center of the ellipsoid to its surface.
geodetic_to_ellipsoidal_harmonic
(longitude, ...)Convert from geodetic to ellipsoidal-harmonic coordinates.
geodetic_to_spherical
(longitude, latitude, ...)Convert from geodetic to geocentric spherical coordinates.
normal_gravitational_potential
(latitude, height)Normal gravitational potential of the ellipsoid at the given latitude and height.
normal_gravity
(latitude, height[, si_units])Normal gravity of the ellipsoid at the given latitude and height.
normal_gravity_potential
(latitude, height)Normal gravity potential of the ellipsoid at the given latitude and height.
prime_vertical_radius
(sinlat)The prime vertical radius of curvature for a given geodetic latitude.
spherical_to_geodetic
(longitude, ...)Convert from geocentric spherical to geodetic coordinates.
Attributes#
- Ellipsoid.area#
The area of the ellipsoid. Definition: \(A = 2 \pi a^2 \left(1 + \dfrac{b^2}{e a^2} \text{arctanh}\,e \right)\). Units: \(m^2\).
- Ellipsoid.area_equivalent_radius#
The area equivalent radius of the ellipsoid. Definition: \(R_2 = \sqrt{A / (4 \pi)}\). Units: \(m\).
- Ellipsoid.eccentricity#
Alias for the first eccentricity.
- Ellipsoid.first_eccentricity#
The (first) eccentricity of the ellipsoid. The ratio between the linear eccentricity and the semimajor axis. Definition: \(e = \dfrac{\sqrt{a^2 - b^2}}{a} = \sqrt{2f - f^2}\). Units: adimensional.
- Ellipsoid.gravity_equator#
The norm of the gravity acceleration vector (gravitational + centrifugal accelerations) at the equator on the surface of the ellipsoid. Units: \(m/s^2\).
- Ellipsoid.gravity_pole#
The norm of the gravity acceleration vector (gravitational + centrifugal accelerations) at the poles on the surface of the ellipsoid. Units: \(m/s^2\).
- Ellipsoid.linear_eccentricity#
The linear eccentricity of the ellipsoid. The distance between the ellipsoid’s center and one of its foci. Definition: \(E = \sqrt{a^2 - b^2}\). Units: \(m\).
- Ellipsoid.mass#
The mass of the ellipsoid. Definition: \(M = GM / G\). Units: \(kg\).
- Ellipsoid.mean_density#
The mean density of the ellipsoid. Definition: \(\rho = M / V\). Units: \(kg / m^3\).
- Ellipsoid.mean_radius#
The mean radius of the ellipsoid. This is equivalent to the degree 0 spherical harmonic coefficient of the ellipsoid shape.
Definition: \(R_0 = \dfrac{1}{4 \pi} {\displaystyle \int_0^{\pi} \int_0^{2 \pi}} r(\theta) \sin \theta \, d\theta \, d\lambda\)
in which \(r\) is the ellipsoid spherical radius, \(\theta\) is spherical latitude, and \(\lambda\) is spherical longitude.
Units: \(m\).
- Ellipsoid.reference_normal_gravity_potential#
The normal gravity potential on the surface of the ellipsoid. Definition: \(U_0 = \dfrac{GM}{E} \arctan{\dfrac{E}{b}} + \dfrac{1}{3} \omega^2 a^2\). Units: \(m^2 / s^2\).
- Ellipsoid.second_eccentricity#
The second eccentricity of the ellipsoid. The ratio between the linear eccentricity and the semiminor axis. Definition: \(e^\prime = \dfrac{\sqrt{a^2 - b^2}}{b} = \dfrac{\sqrt{2f - f^2}}{1 - f}\). Units: adimensional.
- Ellipsoid.semiaxes_mean_radius#
The arithmetic mean radius of the ellipsoid semi-axes [Moritz1988]. Definition: \(R_1 = (2a + b)/3\). Units: \(m\).
- Ellipsoid.semimajor_axis_longitude#
The semimajor axis longitude of the ellipsoid is equal to zero. Definition: \(\lambda_a = 0\). Units: \(m\).
- Ellipsoid.semimedium_axis#
The semimedium axis of the ellipsoid is equal to its semimajor axis. Units: \(m\).
- Ellipsoid.semiminor_axis#
The semiminor (small/polar) axis of the ellipsoid. Definition: \(b = a (1 - f)\). Units: \(m\).
- Ellipsoid.thirdflattening#
The third flattening of the ellipsoid (used in geodetic calculations). Definition: \(f^{\prime\prime}= \dfrac{a -b}{a + b}\). Units: adimensional.
- Ellipsoid.volume#
The volume bounded by the ellipsoid. Definition: \(V = \dfrac{4}{3} \pi a^2 b\). Units: \(m^3\).
- Ellipsoid.volume_equivalent_radius#
The volume equivalent radius of the ellipsoid. Definition: \(R_3 = \left(\dfrac{3}{4 \pi} V \right)^{1/3}\). Units: \(m\).
Methods#
- Ellipsoid.centrifugal_potential(latitude, height)[source]#
Centrifugal potential at the given geodetic latitude and height above the ellipsoid.
The centrifugal potential \(\Phi\) at geodetic latitude \(\phi\) and height above the ellipsoid \(h\) (geometric height) is
\[\Phi(\phi, h) = \dfrac{1}{2} \omega^2 \left(N(\phi) + h\right)^2 \cos^2(\phi)\]in which \(N(\phi)\) is the prime vertical radius of curvature of the ellipsoid and \(\omega\) is the angular velocity.
- Ellipsoid.ellipsoidal_harmonic_to_geodetic(longitude, reduced_latitude, u)[source]#
Convert from ellipsoidal-harmonic coordinates to geodetic coordinates.
The geodetic datum is defined by this ellipsoid.
- Parameters:
- longitude
array
Longitude coordinates on ellipsoidal-harmonic coordinate system in degrees.
- latitude
array
Reduced (parametric) latitude coordinates on ellipsoidal-harmonic coordinate system in degrees.
- u
array
The coordinate u, which is the semiminor axes of the ellipsoid that passes through the input coordinates.
- longitude
- Returns:
- Ellipsoid.geocentric_radius(latitude, geodetic=True)[source]#
Radial distance from the center of the ellipsoid to its surface.
Can be calculated from either geocentric geodetic or geocentric spherical latitudes.
- Parameters:
- Returns:
- geocentric_radius
float
orarray
The geocentric radius for the given latitude(s) in the same units as the ellipsoid axis.
Tip
No elevation is taken into account. If you need the geocentric radius at a height other than zero, use
pymap3d.geodetic2spherical
instead.- geocentric_radius
Notes
The geocentric surface radius \(R\) is a function of the geocentric geodetic latitude \(\phi\) and the semimajor and semiminor axis, \(a\) and \(b\) [1]:
\[R(\phi) = \sqrt{ \dfrac{ (a^2\cos\phi)^2 + (b^2\sin\phi)^2 }{ (a\cos\phi)^2 + (b\sin\phi)^2 } }\]Alternatively, the geocentric surface radius can also be calculated using the geocentric spherical latitude \(\theta\) by passing
geodetic=False
:\[R(\theta) = \sqrt{ \dfrac{ 1 }{ (\frac{\cos\theta}{a})^2 + (\frac{\sin\theta}{b})^2 } }\]This can be useful if you already have the geocentric spherical latitudes and need the geocentric radius of the ellipsoid (for example, in spherical harmonic synthesis). In these cases, the coordinate conversion route is not possible since we need the radial coordinates to do that in the first place.
References
- Ellipsoid.geodetic_to_ellipsoidal_harmonic(longitude, latitude, height)[source]#
Convert from geodetic to ellipsoidal-harmonic coordinates.
The geodetic datum is defined by this ellipsoid, and the coordinates are converted following [Lakshmanan1991] and [LiGotze2001].
- Parameters:
- Returns:
- longitude
array
Longitude coordinates on ellipsoidal-harmonic coordinate system in degrees. The longitude coordinates are not modified during this conversion.
- reduced_latitude
array
The reduced (or parametric) latitude in degrees.
- u
array
The coordinate u, which is the semiminor axis of the ellipsoid that passes through the input coordinates.
- longitude
- Ellipsoid.geodetic_to_spherical(longitude, latitude, height)[source]#
Convert from geodetic to geocentric spherical coordinates.
The geodetic datum is defined by this ellipsoid. The coordinates are converted following [Vermeille2002].
- Parameters:
- Returns:
- longitude
array
Longitude coordinates on geocentric spherical coordinate system in degrees. The longitude coordinates are not modified during this conversion.
- spherical_latitude
array
Converted latitude coordinates on geocentric spherical coordinate system in degrees.
- radius
array
Converted spherical radius coordinates in meters.
- longitude
- Ellipsoid.normal_gravitational_potential(latitude, height)[source]#
Normal gravitational potential of the ellipsoid at the given latitude and height.
Computes the gravitational potential generated by the ellipsoid at the given geodetic latitude \(\phi\) and height above the ellipsoid \(h\) (geometric height).
\[V(\beta, u) = \dfrac{GM}{E} \arctan{\dfrac{E}{u}} + \dfrac{1}{3} \omega^2 a^2 \dfrac{q}{q_0} P_2 (\sin \beta)\]in which \(V\) is the gravitational potential of the ellipsoid (no centrifugal term), \(GM\) is the geocentric gravitational constant, \(E\) is the linear eccentricity, \(\omega\) is the angular rotation rate, \(q\) and \(q_0\) are auxiliary functions, \(P_2\) is the degree 2 unnormalized Legendre Polynomial, and \(u\) and \(\beta\) are ellipsoidal-harmonic coordinates corresponding to the input geodetic latitude and ellipsoidal height. See eq. 2-124 of [HofmannWellenhofMoritz2006].
Assumes that the internal density distribution of the ellipsoid is such that the gravity potential is constant at its surface.
Caution
These expressions are only valid for heights on or above the surface of the ellipsoid.
- Ellipsoid.normal_gravity(latitude, height, si_units=False)[source]#
Normal gravity of the ellipsoid at the given latitude and height.
Computes the magnitude of the gradient of the gravity potential (gravitational + centrifugal; see [HofmannWellenhofMoritz2006]) generated by the ellipsoid at the given geodetic latitude \(\phi\) and height above the ellipsoid \(h\) (geometric height).
\[\gamma(\phi, h) = \|\vec{\nabla}U(\phi, h)\|\]in which \(U = V + \Phi\) is the gravity potential of the ellipsoid, \(V\) is the gravitational potential of the ellipsoid, and \(\Phi\) is the centrifugal potential.
Assumes that the internal density distribution of the ellipsoid is such that the gravity potential is constant at its surface.
Based on closed-form expressions by [Lakshmanan1991] and corrected by [LiGotze2001] which don’t require the free-air correction.
Caution
These expressions are only valid for heights on or above the surface of the ellipsoid.
- Parameters:
- Returns:
- Ellipsoid.normal_gravity_potential(latitude, height)[source]#
Normal gravity potential of the ellipsoid at the given latitude and height.
Computes the gravity potential generated by the ellipsoid at the given geodetic latitude \(\phi\) and height above the ellipsoid \(h\) (geometric height).
\[U(\beta, u) = \dfrac{GM}{E} \arctan{\dfrac{E}{u}} + \dfrac{1}{2} \omega^2 a^2 \dfrac{q}{q_0} \left(\sin^2 \beta - \dfrac{1}{3}\right) + \dfrac{1}{2} \omega^2 \left(u^2 + E^2\right) \cos^2 \beta\]in which \(U\) is the gravity potential of the ellipsoid, \(GM\) is the geocentric gravitational constant, \(E\) is the linear eccentricity, \(\omega\) is the angular rotation rate, \(q\) and \(q_0\) are auxiliary functions, and \(u\) and \(\beta\) are ellipsoidal-harmonic coordinates corresponding to the input geodetic latitude and ellipsoidal height. See eq. 2-126 of [HofmannWellenhofMoritz2006].
Assumes that the internal density distribution of the ellipsoid is such that the gravity potential is constant at its surface.
Caution
These expressions are only valid for heights on or above the surface of the ellipsoid.
- Ellipsoid.prime_vertical_radius(sinlat)[source]#
The prime vertical radius of curvature for a given geodetic latitude.
Note
This function receives the sine of the latitude as input to avoid repeated computations of trigonometric functions in methods/functions that rely on it.
- Parameters:
- sinlat
float
or array_like Sine of the geocentric geodetic latitude.
- sinlat
- Returns:
- prime_vertical_radius
float
or array_like Prime vertical radius given in the same units as the semi-major axis
- prime_vertical_radius
Notes
The prime vertical radius of curvature \(N\) is defined as [2]:
\[N(\phi) = \frac{a}{\sqrt{1 - e^2 \sin^2(\phi)}}\]Where \(a\) is the semimajor axis and \(e\) is the first eccentricity.
References
- Ellipsoid.spherical_to_geodetic(longitude, spherical_latitude, radius)[source]#
Convert from geocentric spherical to geodetic coordinates.
The geodetic datum is defined by this ellipsoid. The coordinates are converted following [Vermeille2002].
- Parameters:
- Returns: