Defining ellipsoids
Contents
Defining ellipsoids#
Boule comes with a range of built-in ellipsoids already but you may want to define your own. If that’s the case, then you have the following options to choose from:
Class: boule.Ellipsoid
When to use: Your model has 2 semi-axis and non-zero flattening.
Caveat: Assumes constant gravity potential on its surface and has no specified density distribution.
Class: boule.Sphere
When to use: Your model has zero flattening.
Caveat: Definition of normal gravity is slightly different since it’s not possible for a rotating sphere to have constant gravity potential on its surface.
Class: boule.TriaxialEllipsoid
When to use: Your model has 3 distinct semi-axis.
Caveat: Definition of normal gravity is the same as the case for the sphere. Gravity calculations are not yet available.
Oblate ellipsoids#
Oblate ellipsoids are defined by 4 numerical parameters:
The semi-major axis (\(a\)): the equatorial radius.
The flattening (\(f = (a - b)/a\)): the ratio between the equatorial and polar radii.
The geocentric gravitational constant (\(GM\)).
The angular velocity (\(\omega\)): spin rate of the ellipsoid which defines the centrifugal potential.
You can also include metadata about where the defining parameters came from (a
citation) and a long descriptive name for the ellipsoid. For example, this is
how the WGS84 ellipsoid can be defined with boule.Ellipsoid
using
parameters from [HofmannWellenhofMoritz2006]:
import boule as bl
WGS84 = bl.Ellipsoid(
name="WGS84",
long_name="World Geodetic System 1984",
semimajor_axis=6378137,
flattening=1 / 298.257223563,
geocentric_grav_const=3986004.418e8,
angular_velocity=7292115e-11,
reference=(
"Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical Geodesy "
"(2nd, corr. ed. 2006 edition ed.). Wien ; New York: Springer."
),
)
print(WGS84)
Ellipsoid(name='WGS84', semimajor_axis=6378137, flattening=0.0033528106647474805, geocentric_grav_const=398600441800000.0, angular_velocity=7.292115e-05, long_name='World Geodetic System 1984', reference='Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical Geodesy (2nd, corr. ed. 2006 edition ed.). Wien\u202f; New York: Springer.')
Warning
You must use boule.Sphere
to represent ellipsoids with
zero flattening. This is because normal gravity calculations in
boule.Ellipsoid
make assumptions that fail for the case of
flattening=0
(mainly that the gravity potential is constant on
the surface of the ellipsoid).
Spheres#
Spheres are defined by 3 numerical parameters:
The radius (\(R\)).
The geocentric gravitational constant (\(GM\)).
The angular velocity (\(\omega\)): spin rate of the sphere which defines the centrifugal potential.
As with oblate ellipsoids, boule.Sphere
also takes the same metadata
as input.
For example, here is the definition of the Mercury spheroid from parameters
found in [Wieczorek2015]:
MERCURY = bl.Sphere(
name="MERCURY",
long_name="Mercury Spheroid",
radius=2_439_372,
geocentric_grav_const=22.031839221e12,
angular_velocity=1.2400172589e-6,
reference=(
"Wieczorek, MA (2015). 10.05 - Gravity and Topography of the Terrestrial "
"Planets, Treatise of Geophysics (Second Edition); Elsevier. "
"doi:10.1016/B978-0-444-53802-4.00169-X"
),
)
print(MERCURY)
Sphere(name='MERCURY', radius=2439372, geocentric_grav_const=22031839221000.0, angular_velocity=1.2400172589e-06, long_name='Mercury Spheroid', reference='Wieczorek, MA (2015). 10.05 - Gravity and Topography of the Terrestrial Planets, Treatise of Geophysics (Second Edition); Elsevier. doi:10.1016/B978-0-444-53802-4.00169-X')
Triaxial ellipsoids#
Triaxial ellipsoids are defined by 5 numerical parameters:
The semi-major axis (\(a\)): the largest radius.
The semi-medium axis (\(b\)): the middle radius.
The semi-minor axis (\(c\)): the smallest radius.
The geocentric gravitational constant (\(GM\)).
The angular velocity (\(\omega\)): spin rate of the ellipsoid which defines the centrifugal potential.
boule.TriaxialEllipsoid
also takes the same metadata attributes as
input.
For example, here is the definition of the Vesta ellipsoid using parameters
from [Russell2012]:
VESTA = bl.TriaxialEllipsoid(
name="VESTA",
long_name="Vesta Triaxial Ellipsoid",
semimajor_axis=286_300,
semimedium_axis=278_600,
semiminor_axis=223_200,
geocentric_grav_const=1.729094e10,
angular_velocity=326.71050958367e-6,
reference=(
"Russell, C. T., Raymond, C. A., Coradini, A., McSween, H. Y., Zuber, "
"M. T., Nathues, A., et al. (2012). Dawn at Vesta: Testing the "
"Protoplanetary Paradigm. Science. doi:10.1126/science.1219381"
),
)
print(VESTA)
TriaxialEllipsoid(name='VESTA', semimajor_axis=286300, semimedium_axis=278600, semiminor_axis=223200, geocentric_grav_const=17290940000.0, angular_velocity=0.00032671050958367, long_name='Vesta Triaxial Ellipsoid', reference='Russell, C. T., Raymond, C. A., Coradini, A., McSween, H. Y., Zuber, M. T., Nathues, A., et al. (2012). Dawn at Vesta: Testing the Protoplanetary Paradigm. Science. doi:10.1126/science.1219381')
Attention
Gravity calculations have not been implemented yet for triaxial ellipsoids. If you’re interested in this feature or would like to help implement it, please get in touch.